- Award ID(s):
- 1903316
- PAR ID:
- 10436307
- Date Published:
- Journal Name:
- arXivorg
- Volume:
- https://arxiv.org/abs/2212.11401
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Whistlers are magnetized plasma waves in planetary magnetospheres. Bounded whistlers, known as helicons, can create high-density laboratory plasmas. We demonstrate reversal of the plasma discharge direction by changing either antenna helicity or magnetic field direction. Simulations reproduce these findings only in the presence of a radial density gradient. Inclusion of such a gradient in the wave equation gives rise to azimuthal shear currents, which for the first time consistently explains the preference of right- over left-handed whistlers and the discharge directionality in helicon plasmas.more » « less
-
Abstract Chiral magnetic domains are topological spin textures in which the Dzyaloshinskii–Moriya interaction assigns a given chirality to the domain walls. Notably, despite rapid progress in chiral magnetic research, one fundamental issue that remains unclear is how the chirality of chiral magnetic domains change as a magnetic field deforms the spin texture. Using spin‐polarized low energy electron microscopy, the evolution of Fe/Ni chiral magnetic stripe domains are investigated in single‐crystalline Fe/Ni/Cu/Co/Cu(001) multilayers in which the interlayer magnetic coupling between the Co and Fe/Ni films serves as an in‐plane magnetic field. Contrary to theoretical works, it is found that the chirality of the Néel walls results in a parallel alignment of the magnetic stripes with the in‐plane magnetic field direction. The transformation of chiral Néel walls into achiral Bloch walls can be precisely controlled by tuning the Cu spacer layer thickness. In addition, the domain wall exhibits a spontaneous asymmetry within the in‐plane magnetic field, leading to an unbalanced chirality between the left‐handed and right‐handed Bloch walls. These new results foster a better understanding of the chiral domain properties within a magnetic field.
-
The spectrum of collective excitations in Weyl materials is studied by using a consistent hydro- dynamics. The corresponding framework includes the vortical and chiral anomaly effects, as well as the dependence on the separation between the Weyl nodes in energy b0 and momentum b. The latter are introduced via the Chern–Simons contributions to the electric current and charge densities in the Maxwell’s equations. It is found that, even in the absence of a background magnetic field, certain collective excitations (e.g., the helicon-like modes and anomalous Hall waves) are strongly affected by the chiral shift b. In a background magnetic field, the existence of distinctive longi- tudinal and transverse anomalous Hall waves with a linear dispersion relation is predicted. They originate from the oscillations of the electric charge density and electromagnetic fields, in which different components of the fields are connected via the anomalous Hall effect in Weyl semimetals.more » « less
-
null (Ed.)This paper reports the first chip-based demonstration (at any frequency) of a CMOS front-end that generates and receives electromagnetic waves with rotating wave phase front (namely orbital angular momentum or OAM). The chip, based on a uniform circularly placed patch antenna array at 0.31THz, transmits reconfigurable OAM modes, which are digitally switched among the m=0 (plane wave), +1 (left-handed), −1 (right-handed) and superposition (+1)+(-1) states. The chip is also reconfigurable into a receiver mode that identifies different OAM modes with >10dB rejection of unintended modes. The array, driven by only one active path, has a measured EIRP of −4.8dBm and consumes 154mW of DC power in the OAM source mode. In the receiver mode, it has a measured conversion loss of 30dB and consumes 166mW of DC power. The output OAM beam profiles and mode orthogonality are experimentally verified and a full silicon OAM link is demonstrated.more » « less
-
Abstract Radio frequency (RF) driven helicon plasma sources are commonly used for their ability to produce high-density argon plasmas ( n > 10 19 m −3 ) at relatively moderate powers (typical RF power < 2 kW). Typical electron temperatures are <10 eV and typical ion temperatures are <0.6 eV. A newly designed helicon antenna assembly (with concentric, double-layered, fully liquid-cooled RF-transparent windows) operates in steady-state at RF powers up to 10 kW. We report on the dependence of argon plasma density, electron temperature and ion temperature on RF power. At 10 kW, ion temperatures >2 eV in argon plasmas are measured with laser induced fluorescence, which is consistent with a simple volume averaged 0D power balance model. 1D Monte Carlo simulations of the neutral density profile for these plasma conditions show strong neutral depletion near the core and predict neutral temperatures well above room temperatures. The plasmas created in this high-power helicon source (when light ions are employed) are ideally suited for fusion divertor plasma-material interaction studies and negative ion production for neutral beams.more » « less