skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coherent mode and turbulence measurements with a fast camera
This study employs a fast camera with frame rates up to 900,000 fps to measure the transfer of energy across spatial scales in helicon source plasmas and during flux rope mergers and the measurement of azimuthal mode structures in helicon plasmas. By extracting pixel-scale dispersion relations and power spectral density (PSD) measurements, we measure the details of turbulent wave modes and energy distribution across a broad range of spatial scales within the plasma. We confirm the presence of drift waves in helicon plasmas, as well as the existence of strong dissipation regions in the PSD at electron skin depth scales for both helicon and flux rope merger experiments. This approach overcomes many limitations of conventional probes, providing high spatial and temporal resolution, without perturbing the plasma.  more » « less
Award ID(s):
1902111
PAR ID:
10612290
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Review of Scientific Instruments
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
95
Issue:
9
ISSN:
0034-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.The mechanisms regulating the transport and energization of charged particles in space and astrophysical plasmas are still debated. Plasma turbulence is known to be a powerful particle accelerator. Large-scale structures, including flux ropes and plasmoids, may contribute to confining particles and lead to fast particle energization. These structures may also modify the properties of the turbulent, nonlinear transfer across scales. Aims.We aim to investigate how large-scale flux ropes are perturbed and, simultaneously, how they influence the nonlinear transfer of turbulent energy toward smaller scales. We then intend to address how these structures affect particle transport and energization. Methods.We adopted magnetohydrodynamic simulations perturbing a large-scale flux rope in solar-wind conditions and possibly triggering turbulence. Then, we employed test-particle methods to investigate particle transport and energization in the perturbed flux rope. Results.The large-scale helical flux rope inhibits the turbulent cascade toward smaller scales, especially if the amplitude of the initial perturbations is not large (∼5%). In this case, particle transport is inhibited inside the structure. Fast particle acceleration occurs in association with phases of trapped motion within the large-scale flux rope. 
    more » « less
  2. Helicon waves are magnetized plasma waves, similar to whistler waves in Earth's ionosphere, that are used to create high-density laboratory plasmas. We demonstrate that the discharge direction can be reversed by changing the antenna helicity or the magnetic field direction. Simulations reproduce these findings if a radial density gradient exists. A helicon wave equation that includes such a density gradient gives rise to a modulating magnetic field that amplifies right-handed but attenuates left-handed helicon modes. This explains for the first time consistently the dominance of right-handed over left-handed modes and the discharge directionality in helicon plasmas. 
    more » « less
  3. Abstract Radio frequency (RF) driven helicon plasma sources are commonly used for their ability to produce high-density argon plasmas ( n > 10 19  m −3 ) at relatively moderate powers (typical RF power < 2 kW). Typical electron temperatures are <10 eV and typical ion temperatures are <0.6 eV. A newly designed helicon antenna assembly (with concentric, double-layered, fully liquid-cooled RF-transparent windows) operates in steady-state at RF powers up to 10 kW. We report on the dependence of argon plasma density, electron temperature and ion temperature on RF power. At 10 kW, ion temperatures >2 eV in argon plasmas are measured with laser induced fluorescence, which is consistent with a simple volume averaged 0D power balance model. 1D Monte Carlo simulations of the neutral density profile for these plasma conditions show strong neutral depletion near the core and predict neutral temperatures well above room temperatures. The plasmas created in this high-power helicon source (when light ions are employed) are ideally suited for fusion divertor plasma-material interaction studies and negative ion production for neutral beams. 
    more » « less
  4. We present the overview of a new experimental apparatus that has been developed to create a single flux rope for studying magnetized plasma jet dynamics, with a focus on the roles of Magnetohydrodynamic instabilities in magnetic reconnection and ion heating. The plasma is generated using coplanar electrodes with a single gas nozzle to create a single flux rope, high-voltage capacitor banks, gas puff valves, and a background magnetic field coil. This setup enables controlled exploration of various plasma stability regimes by adjusting external parameters. A comprehensive suite of diagnostic tools—including a He–Ne interferometer, ion Doppler spectroscopy, and a magnetic field probe array—has been implemented to measure key plasma parameters such as density, temperature, and magnetic field. Initial findings indicate that the apparatus can create a single flux rope and sustain it as a stable jet, a kink-unstable jet, and pinched plasma. In particular, kink instability results in significant ion heating, suggesting that magnetic reconnection may be driven by kink instability. These findings provide valuable insights into plasma dynamics relevant to space physics and magnetized inertial fusion, where fluid instabilities and magnetic reconnection are frequently observed. 
    more » « less
  5. A multi-dimensional incoherent Thomson scattering diagnostic system capable of measuring electron temperature anisotropies at the level of the electron velocity distribution function (EVDF) is implemented on the PHAse Space MApping facility to investigate electron energization mechanisms during magnetic reconnection. This system incorporates two injection paths (perpendicular and parallel to the axial magnetic field) and two collection paths, providing four independent EVDF measurements along four velocity space directions. For strongly magnetized electrons, a 3D EVDF comprised of two characteristic electron temperatures perpendicular and parallel to the local magnetic field line is reconstructed from the four measured EVDFs. Validation of isotropic electrons in a single magnetic flux rope and a steady-state helicon plasma is presented. 
    more » « less