A bstract A measurement of the inclusive jet production in proton-proton collisions at the LHC at $$ \sqrt{s} $$ s = 13 TeV is presented. The double-differential cross sections are measured as a function of the jet transverse momentum p T and the absolute jet rapidity |y| . The anti- k T clustering algorithm is used with distance parameter of 0.4 (0.7) in a phase space region with jet p T from 97 GeV up to 3.1 TeV and |y| < 2 . 0. Data collected with the CMS detector are used, corresponding to an integrated luminosity of 36.3 fb − 1 (33.5 fb − 1 ). The measurement is used in a comprehensive QCD analysis at next-to-next-to-leading order, which results in significant improvement in the accuracy of the parton distributions in the proton. Simultaneously, the value of the strong coupling constant at the Z boson mass is extracted as α S ( m Z ) = 0 . 1170 ± 0 . 0019. For the first time, these data are used in a standard model effective field theory analysis at next-to-leading order, where parton distributions and the QCD parameters are extracted simultaneously with imposed constraints on the Wilson coefficient c 1 of 4-quark contact interactions.
more »
« less
Revisiting proton–proton fusion in chiral effective field theory
Abstract We calculate the S -factor for proton–proton fusion using chiral effective field theory interactions and currents. By performing order-by-order calculations with a variety of chiral interactions that are regularized and calibrated in different ways, we assess the uncertainty in the S -factor from the truncation of the effective field theory expansion and from the sensitivity of the S -factor to the short-distance axial current determined from three- and four-nucleon observables. We find that S (0) = (4.100 ± 0.024(syst) ± 0.013(stat) ± 0.008( g A )) × 10 −23 MeV fm 2 , where the three uncertainties arise, respectively, from the truncation of the effective field theory expansion, use of the two-nucleon axial current fit to few-nucleon observables and variation of the axial coupling constant within the recommended range. The increased value of S (0) compared to previous calculations is mainly driven by an increase in the recommended value for the axial coupling constant and is in agreement with a recent analysis based on pionless effective field theory.
more »
« less
- PAR ID:
- 10436488
- Date Published:
- Journal Name:
- Journal of Physics G: Nuclear and Particle Physics
- Volume:
- 50
- Issue:
- 9
- ISSN:
- 0954-3899
- Page Range / eLocation ID:
- 095102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Scattering of high energy particles from nucleons probes their structure, as was done in the experiments that established the non-zero size of the proton using electron beams 1 . The use of charged leptons as scattering probes enables measuring the distribution of electric charges, which is encoded in the vector form factors of the nucleon 2 . Scattering weakly interacting neutrinos gives the opportunity to measure both vector and axial vector form factors of the nucleon, providing an additional, complementary probe of their structure. The nucleon transition axial form factor, F A , can be measured from neutrino scattering from free nucleons, ν μ n → μ − p and $${\bar{\nu }}_{\mu }p\to {\mu }^{+}n$$ ν ¯ μ p → μ + n , as a function of the negative four-momentum transfer squared ( Q 2 ). Up to now, F A ( Q 2 ) has been extracted from the bound nucleons in neutrino–deuterium scattering 3–9 , which requires uncertain nuclear corrections 10 . Here we report the first high-statistics measurement, to our knowledge, of the $${\bar{\nu }}_{\mu }\,p\to {\mu }^{+}n$$ ν ¯ μ p → μ + n cross-section from the hydrogen atom, using the plastic scintillator target of the MINERvA 11 experiment, extracting F A from free proton targets and measuring the nucleon axial charge radius, r A , to be 0.73 ± 0.17 fm. The antineutrino–hydrogen scattering presented here can access the axial form factor without the need for nuclear theory corrections, and enables direct comparisons with the increasingly precise lattice quantum chromodynamics computations 12–15 . Finally, the tools developed for this analysis and the result presented are substantial advancements in our capabilities to understand the nucleon structure in the weak sector, and also help the current and future neutrino oscillation experiments 16–20 to better constrain neutrino interaction models.more » « less
-
null (Ed.)Understanding the nucleon spin structure in the regime where the strong interaction becomes truly strong poses a challenge to both experiment and theory. At energy scales below the nucleon mass of about 1 GeV, the intense interaction among the quarks and gluons inside the nucleon makes them highly correlated. Their coherent behaviour causes the emergence of effective degrees of freedom, requiring the application of non-perturbative techniques such as chiral effective field theory. Here we present measurements of the neutron’s generalized spin polarizabilities that quantify the neutron’s spin precession under electromagnetic fields at very low energy-momentum transfer squared down to 0.035 GeV2. In this regime, chiral effective field theory calculations are expected to be applicable. Our data, however, show a strong discrepancy with these predictions, presenting a challenge to the current description of the neutron’s spin properties.more » « less
-
A bstract The first measurement of the CP structure of the Yukawa coupling between the Higgs boson and τ leptons is presented. The measurement is based on data collected in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV by the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb − 1 . The analysis uses the angular correlation between the decay planes of τ leptons produced in Higgs boson decays. The effective mixing angle between CP -even and CP -odd τ Yukawa couplings is found to be − 1 ± 19°, compared to an expected value of 0 ± 21° at the 68.3% confidence level. The data disfavour the pure CP -odd scenario at 3.0 standard deviations. The results are compatible with predictions for the standard model Higgs boson.more » « less
-
Abstract Lifetimes of higher-lying states ($$2_2^+$$ and$$4_1^+$$ ) in$$^{16}$$ C have been measured, employing the Gammasphere and Microball detector arrays, as key observables to test and refine ab initio calculations based on interactions developed within chiral Effective Field Theory. The presented experimental constraints to these lifetimes of$$\tau ({2_2^+}) = [\,244, 446]\,~\textrm{fs}$$ and$$\tau ({4_1^+}) = [\,1.8, 4]\,~\textrm{ps}$$ , combined with previous results on the lifetime of the$$2_1^+$$ state of$$^{16}$$ C, provide a rather complete set of key observables to benchmark the theoretical developments. We present No-Core Shell-Model calculations using state-of-the-art chiral 2- (NN) and 3-nucleon (3N) interactions at next-to-next-to-next-to-leading order for both the NN and the 3N contributions and a generalized natural-orbital basis (instead of the conventional harmonic-oscillator single-particle basis) which reproduce, for the first time, the experimental findings remarkably well. The level of agreement of the new calculations as compared to the CD-Bonn meson-exchange NN interaction is notable and presents a critical benchmark for theory.more » « less
An official website of the United States government

