Mass extinctions change global ecosystems, and the end‐Triassic mass extinction was hypothesized to have precipitated the rise of dinosaur dominance, with dinosaurs filling resource zones of eliminated large‐bodied reptilian lineages. This replacement has been explicitly hypothesized for theropod dinosaurs, and the eastern North American theropod footprint record suggests an increase in maximum body size across the Triassic‐Jurassic boundary. Without taking ontogenetic stage in account, the maximum size of the rare large Triassic theropods worldwide supports this hypothesis, with the size of the largest individuals corresponding to the largest Triassic theropod tracks. However, both morphological data and histological examination suggest that known large‐bodied Triassic theropods are represented by immature individuals still growing rapidly at the time of death, indicating that the maximum body size of Triassic theropods was much larger than that a strict reading of the body fossil record would suggest. The size increase recorded in the sediments of eastern North America is not part of a global trend. Instead of a simple ecological replacement of non‐dinosaurian archosaurs by dinosaurs, the rise in theropod dinosaurian ecological dominance was an extended process across the end of the Late Triassic into the Jurassic. Anat Rec, 303:1158–1169, 2020. © 2019 Wiley Periodicals, Inc.
- Award ID(s):
- 1925973
- NSF-PAR ID:
- 10436571
- Editor(s):
- Claessens, Leon
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 17
- Issue:
- 10
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0266648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
The diversity of mid-Cretaceous tyrannosauroids is poorly understood. We describe a partial tyrannosauroid femur from the Albian–Cenomanian Wayan Formation of eastern Idaho that helps to fill in an important spatiotemporal gap in the North American record of tyrannosaurs. This specimen, consisting of the proximal half of the bone, is morphologically similar to the femur of Moros intrepidus, a small-bodied tyrannosauroid from the Cenomanian Mussentuchit Member of the Cedar Mountain Formation of Utah, but not referable to this taxon. The Wayan femur lacks an autapomorphy diagnostic for Moros intrepidus, indicating the presence of a previously unrecognized tyrannosauroid taxon in the early Late Cretaceous of Laramidia. Histological results indicate that, at the time of death, this individual was at least five years old, skeletally immature, and undergoing growth at a moderate rate. The addition of this tyrannosauroid to the Wayan-Vaughn Assemblage provides additional evidence for the widespread distribution of various tyrannosauroid taxa in Laramidia during the early Late Cretaceous.more » « less
-
ABSTRACT Body size has thermal repercussions that impact physiology. Large‐bodied dinosaurs potentially retained heat to the point of reaching dangerous levels, whereas small dinosaurs shed heat relatively easily. Elevated body temperatures are known to have an adverse influence on neurosensory tissues and require physiological mechanisms for selective brain and eye temperature regulation. Vascular osteological correlates in fossil dinosaur skulls from multiple clades representing different body‐size classes were identified and compared. Neurovascular canals were identified that differentiate thermoregulatory strategies involving three sites of evaporative cooling that are known in extant diapsids to function in selective brain temperature regulation. Small dinosaurs showed similarly sized canals, reflecting a plesiomorphic balanced pattern of blood supply and a distributed thermoregulatory strategy with little evidence of enhancement of any sites of thermal exchange. Large dinosaurs, however, showed a more unbalanced vascular pattern whereby certain sites of thermal exchange were emphasized for enhanced blood flow, reflecting a more focused thermal strategy. A quantitative, statistical analysis of canal cross‐sectional area was conducted to test these anatomical results, confirming that large‐bodied, and often large‐headed, species showed focused thermal strategies with enhanced collateral blood flow to certain sites of heat exchange. Large theropods showed evidence for a plesiomorphic balanced blood flow pattern, yet evidence for vascularization of the large antorbital paranasal air sinus indicates theropods may have had a fourth site of heat exchange as part of a novel focused thermoregulatory strategy. Evidence presented here for differing thermoregulatory strategies based on size and phylogeny helps refine our knowledge of dinosaur physiology. Anat Rec, 303:1075–1103, 2020. © 2019 American Association for Anatomy
-
Liu, Jun (Ed.)Intensifying macrovertebrate reconnaissance together with refined age-dating of mid-Cretaceous assemblages in recent decades is producing a more nuanced understanding of the impact of the Cretaceous Thermal Maximum on terrestrial ecosystems. Here we report discovery of a new early-diverging ornithopod, Iani smithi gen. et sp. nov., from the Cenomanian-age lower Mussentuchit Member, Cedar Mountain Formation of Utah, USA. The single known specimen of this species (NCSM 29373) includes a well-preserved, disarticulated skull, partial axial column, and portions of the appendicular skeleton. Apomorphic traits are concentrated on the frontal, squamosal, braincase, and premaxilla, including the presence of three premaxillary teeth. Phylogenetic analyses using parsimony and Bayesian inference posit Iani as a North American rhabdodontomorph based on the presence of enlarged, spatulate teeth bearing up to 12 secondary ridges, maxillary teeth lacking a primary ridge, a laterally depressed maxillary process of the jugal, and a posttemporal foramen restricted to the squamosal, among other features. Prior to this discovery, neornithischian paleobiodiversity in the Mussentuchit Member was based primarily on isolated teeth, with only the hadrosauroid Eolambia caroljonesa named from macrovertebrate remains. Documentation of a possible rhabdodontomorph in this assemblage, along with published reports of an as-of-yet undescribed thescelosaurid, and fragmentary remains of ankylosaurians and ceratopsians confirms a minimum of five, cohabiting neornithischian clades in earliest Late Cretaceous terrestrial ecosystems of North America. Due to poor preservation and exploration of Turonian–Santonian assemblages, the timing of rhabdodontomorph extirpation in the Western Interior Basin is, as of yet, unclear. However, Iani documents survival of all three major clades of Early Cretaceous neornithischians (Thescelosauridae, Rhabdodontomorpha, and Ankylopollexia) into the dawn of the Late Cretaceous of North America.more » « less
-
It has long been debated why groups such as non-avian dinosaurs became extinct whereas mammals and other lineages survived the Cretaceous/Paleogene mass extinction 66 million years ago. We used Markov networks, ecological niche partitioning, and Earth System models to reconstruct North American food webs and simulate ecospace occupancy before and after the extinction event. We find a shift in latest Cretaceous dinosaur faunas, as medium-sized species counterbalanced a loss of megaherbivores, but dinosaur niches were otherwise stable and static, potentially contributing to their demise. Smaller vertebrates, including mammals, followed a consistent trajectory of increasing trophic impact and relaxation of niche limits beginning in the latest Cretaceous and continuing after the mass extinction. Mammals did not simply proliferate after the extinction event; rather, their earlier ecological diversification might have helped them survive.