skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of Zr addition on the local structure and mechanical properties of Ti–Ta–Nb–Zr refractory high-entropy alloys
Award ID(s):
1809640
PAR ID:
10436600
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Research and Technology
Volume:
19
Issue:
C
ISSN:
2238-7854
Page Range / eLocation ID:
4428 to 4438
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A plasma electrolytic oxidation (PEO) is an electrochemical and eco-friendly process where the surface features of the metal substrate are changed remarkably by electrochemical reactions accompanied by plasma micro-discharges. A stiff, adhesive, and conformal oxide layer on the Zr and Zr-alloy substrates can be formed by applying the PEO process. The review describes recent progress on various applications and functionality of PEO coatings in light of increasing industrial, medical, and optoelectronic demands for the production of advanced coatings. Besides, it explains how the PEO coating can address concerns about employing protective and long-lasting coatings with a remarkable biocompatibility and a broad excitation and absorption range of photoluminescence. A general overview of the process parameters of coatings is provided, accompanied by some information related to the biological conditions, under which, coatings are expected to function. The focus is to explain how the biocompatibility of coatings can be improved by tailoring the coating process. After that, corrosion and wear performance of PEO coatings are described in light of recognizing parameters that lead to the formation of coatings with outstanding performance in extreme loading conditions and corrosive environments. Finally, a future outlook and suggested research areas are outlined. The emerging applications derived from paramount features of the coating are considered in light of practical properties of coatings in areas including biocompatibility and bioactivity, corrosion and wear protection, and photoluminescence of coatings 
    more » « less
  2. Abstract The$$^{90}$$ 90 Zr(p,$$\gamma $$ γ )$$^{91}$$ 91 Nb reaction is one of the important reactions in the$$A\approx 90$$ A 90 mass region and part of the nucleosynthesis path responsible for production of$$^{92}$$ 92 Mo during the$$\gamma $$ γ -process. Discrepant data in the literature provide a cross section that varies up to 30% within the Gamow window for the$$^{90}$$ 90 Zr(p,$$\gamma $$ γ )$$^{91}$$ 91 Nb reaction. Thus, the cross section measurements of$$^{90}$$ 90 Zr(p,$$\gamma $$ γ )$$^{91}$$ 91 Nb reaction were revisited using the$$\gamma $$ γ -summing technique. The results are consistent with the lower-value cross sections found in the literature. Based on the new data an updated reaction rate for$$^{90}$$ 90 Zr(p,$$\gamma $$ γ )$$^{91}$$ 91 Nb is provided that is up to 20% higher than that obtained from thenon-smokercode. 
    more » « less
  3. Hydride precipitation in zirconium alloys leads to embrittlement, making it essential to understand their prevalence and stability in the microstructure. Dictionary indexing of Kikuchi patterns, along with orientation relationship analysis and x-ray diffraction, confirmed the presence of both delta and gamma hydride phases in Zircaloy-4. Both phases were found to be stable in recrystallised zirconium, with the gamma phase exhibiting a distinct orientation relationship with the matrix. Delta hydride morphology and orientation were influenced by local stresses, resulting in a change in orientation during precipitation. By analysing the orientation relationships, the evolution of hydride phases could be visualised, providing insights into the room temperature stability of both delta and gamma hydrides. 
    more » « less
  4. Microstructure refinement and optimized alloying can improve metallic alloy performance: stable nanocrystalline (NC) alloys with immiscible second phases, e.g., Cu-Ta, are stronger than unstable NC alloys and their coarse-grained (CG) counterparts, but higher melting point matrices are needed. Hypoeutectic, CG Ni-Y-Zr alloys were produced via arc-melting to explore their potential as high-performance materials. Microstructures were studied to determine phases present, local composition and length scales, while heat treatments allowed investigating microstructural stability. Alloys had a stable, hierarchical microstructure with ~250 nm ultrafine eutectic, ~10 µm dendritic arm spacing and ~1 mm grain size. Hardness and uniaxial compression tests revealed that mechanical properties of Ni-0.5Y-1.8Zr (in wt%) were comparable to Inconel 617 despite the small alloying additions, due to its hierarchical microstructure. Uniaxial compression at 600 °C showed that ternary alloys outperformed Ni-Zr and Ni-Y binary alloys in flow stress and hardening rates, which indicates that the Ni17Y2 phase was an effective reinforcement for the eutectic, which supplemented the matrix hardening due to increased solubility of Zr. Results suggest that ternary Ni-Y-Zr alloys hold significant promise for high temperature applications. 
    more » « less