skip to main content


Title: Lessons learned from evaluating three virtual Research Experiences for Teachers (RET) programs using common instruments and protocols
Due to the COVID-19 crisis preventing face-to-face interaction, three National Science Foundation (NSF)-funded centers employed a virtual/remote format for their summer Research Experiences for Teachers (RET) Programs, reaching K-12 STEM teachers across the country. Teachers participated virtually from four different states by joining engineering research teams from four different universities in three different RET programs. Lab experiences depended on the nature of the research and institution-specific guidelines for in-lab efforts, resulting in some teachers conducting lab experiments with materials sent directly to their homes, some completing their experience fully online, and some completing portions of lab work in person on campus. Each teacher developed an engineering lesson plan based on the corresponding center’s research to be implemented either in person or virtually during the 2020-2021 academic school year. Research posters, created with support from graduate student and faculty mentors, were presented to industry partners, education partners, center members, and the NSF. Support for the teachers as they implement lessons, present posters, and disseminate their developed curricula, has continued throughout the year. Common survey and interview/focus group protocols, previously designed specifically for measuring the impact of engineering education programs, were adapted and used to separately evaluate each of the three virtual programs. Strengths and suggested areas of improvement will be explored and discussed to inform future use of the common evaluation instruments. Additionally, preliminary results, highlighting general successes and challenges of shifting RET programming to a virtual/remote format across the three centers, will be discussed.  more » « less
Award ID(s):
2023275
NSF-PAR ID:
10436641
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Review directory American Society for Engineering Education
ISSN:
0092-4326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction Despite years of research and practice, there remains a need to broaden participation in engineering. The NSF-funded research study [PROGRAM] addresses this issue by providing engineering curricula and professional development for high school teachers. [PROGRAM] also engages in building and maintaining a Community of Practice (CoP). The CoP model allows for strategic partnerships to create lasting connections between high schools and various community partners. Community partners include stakeholders such as school counselors, school administrators, district officials, parents, university liaisons, community liaisons, and industry representatives that cultivate a local ecosystem to support students and teachers in this pre-college engineering education initiative. Since the roles and responsibilities of community partners vary, this paper focuses on one type of partner: university liaisons. Within the CoP, university liaisons voluntarily commit their knowledge and expertise to support high school teachers during professional development and curriculum implementation. Each liaison typically supports up to two high schools. Liaisons also engage with each other via Slack, an online communication platform. Objective Our paper examines how university liaisons engage with the CoP in [PROGRAM]. The goals of this study are to: 1) Capture aspects that are currently viewed as exciting or challenging for university liaisons, and 2) Understand ways in which [PROGAM] could facilitate further involvement of these university liaisons in the CoP. Methods After obtaining IRB approval, we conducted virtual focus groups with five liaisons from distinct universities who work with eight [PROGAM] schools. Two focus groups averaged 60 minutes long; liaisons discussed their relationships with their partner high schools, resources through [PROGRAM], and education and outreach at their universities. The semi-structured format of the focus groups allowed liaisons to respond to each other and elaborate on their thoughts in a casual atmosphere. The focus groups were recorded and two coders are currently analyzing the transcripts. Results Analysis is ongoing. Initial findings suggest that university liaisons enjoy the experience of engaging with high school teachers and students, especially when they can bring students to campus and share their institutions’ engineering programs. As a proposed program change, liaisons are interested in more structure to the CoP. For example, high school teachers currently meet virtually as small groups for scheduled check-ins; university liaisons expressed interest in a similar monthly meeting to discuss their experiences and share resources and recommendations with other liaisons. Conclusions This paper evaluated the perceived experience of university liaisons in a CoP within [PROGRAM]. Findings provide direction on the best way to support current and future liaisons. These results may also be applicable to other programs that aim to cultivate lasting relationships between K-12 educators and postsecondary institutions. 
    more » « less
  2. Since the summer of 2006, the NSF-funded AERIM Research Experience for Undergraduates (REU) program in the department of Mechanical Engineering at Oakland University has been offering rich research, professional development, networking and cohort-building experiences to undergraduate students in the science, technology, engineering and math (STEM) fields. With a focus on hands-on automotive and energy research projects and a proximity to many automotive companies, the program has been successful at attracting a diverse group of students. In fact, a total of 104 students from 70 different universities have participated in the program over the past 15 years, with about 70% of the participants coming from groups that have traditionally been underrepresented in engineering (women in particular). Most research projects have been team-based and have typically involved experimental and analytical work with perhaps a handful of numerical simulation-based projects over the years. Prior assessment has shown that students greatly valued and benefited from interacting with faculty mentors, industry professionals, industry tours, and each other. As a result of limitations placed on in-person meeting and on-campus activities impacted by the Covid-19 pandemic, the program had to pivot to a virtual format in the summer of 2021. This virtual format brought about several challenges and opportunities, which will be discussed in this paper. Despite the virtual format, the program was successful at attracting a diverse group of students in 2021. Twelve undergraduate students from eight different institutions took part remotely in the program and encompassed several time zones ranging from Eastern Standard Time to Alaska Standard Time. The 2021 cohort included seven women, three underrepresented minorities, and two students with a reported disability. Also noteworthy is the fact that half of the students were first generation in college students. While the PIs were happy with the student make up, running the program in a virtual format was very challenging. For one, what was traditionally a hands-on, experimental research program had to pivot to completely simulation/analytical based projects. This brought about issues related to remote access to software, time lags and difficulties with engaging students while computer simulations were running remotely. While the program was able to offer several seminars and meetings with industry professionals in a virtual fashion, it was not possible to provide industry tours or the casual conversations that would spontaneously occur when meeting face to face with industry professionals. Finally, with students logging in from their homes across the country and across different time zones rather than living together in the Oakland University dorms, the usual bonding and group interactions that would normally occur over the summer were difficult to replicate. In this paper we discuss what was learned from these challenges and how the virtual format also offered opportunities that will be utilized in future years. 
    more » « less
  3. A new Research Experience for Teachers (RET) site was established in the Department of Civil, Construction, and Environmental Engineering at North Dakota State University (NDSU) with funding from the National Science Foundation Division of Engineering Education and Centers (NSF Award #1953102). The site focused on civil engineering instruction around the theme of mitigating natural disasters for secondary education (6th to 12th grade) teachers. Eight local teachers and one pre-service teacher (who comprised the first cohort) were provided with a six-week long authentic research experience during the summer, which they translated into a hands-on curriculum for their classrooms during the 2021-2022 academic year. Partnerships were developed between the host institution, area teachers and local partners from civil engineering industries. This paper will summarize the lessons learned by the authors as well as the effectiveness of the program activities to accomplish two objectives: (1) provide a deeper understanding of civil engineering and (2) develop better abilities among secondary education teachers to prepare future science, technology, engineering and mathematics (STEM) leaders. Several strengths were identified by the authors as they reflected on the summer activities including the successes in creating strong connections between the teachers, faculty members and graduate students, and the industry partners as well as the agility of the core research team to overcome unexpected challenges. However, the reflections also revealed several areas for improvement that would increase the accessibility of the site to underserved and/or underrepresented teacher populations, better utilize the resources available and in general, improve the quality of the program and curriculum developed by the teachers. Included within this paper are suggestions that the authors would make to improve current and future RET sites. All of the teachers agreed or strongly agreed that their participation in the RET program increased their knowledge of STEM topics and specifically, civil engineering topics. The participants agreed to varying extents that they will use the information they learned from the program to teach their students and will implement the new strategies they gained to promote increased student learning about STEM topics. Furthermore, the feedback that they provided corroborated some of the same changes the authors plan to implement. 
    more » « less
  4. null (Ed.)
    COVID-19 has altered the landscape of teaching and learning. For those in in-service teacher education, workshops have been suspended causing programs to adapt their professional development to a virtual space to avoid indefinite postponement or cancellation. This paradigm shift in the way we conduct learning experiences creates several logistical and pedagogical challenges but also presents an important opportunity to conduct research about how learning happens in these new environments. This paper describes the approach we took to conduct research in a series of virtual workshops aimed at teaching rural elementary teachers about engineering practices and how to teach a unit from an engineering curriculum. Our work explores how engineering concepts and practices are socially constructed through interactions with teachers, students, and artifacts. This approach, called interactional ethnography has been used by the authors and others to learn about engineering teaching and learning in precollege classrooms. The approach relies on collecting data during instruction, such as video and audio recordings, interviews, and artifacts such as journal entries and photos of physical designs. Findings are triangulated by analyzing these data sources. This methodology was going to be applied in an in-person engineering education workshop for rural elementary teachers, however the pandemic forced us to conduct the workshops remotely. Teachers, working in pairs, were sent workshop supplies, and worked together during the training series that took place over Zoom over four days for four hours each session. The paper describes how we collected video and audio of teachers and the facilitators both in whole group and in breakout rooms. Class materials and submissions of photos and evaluations were managed using Google Classroom. Teachers took photos of their work and scanned written materials and submitted them all by email. Slide decks were shared by the users and their group responses were collected in real time. Workshop evaluations were collected after each meeting using Google Forms. Evaluation data suggest that the teachers were engaged by the experience, learned significantly about engineering concepts and the knowledge-producing practices of engineers, and feel confident about applying engineering activities in their classrooms. This methodology should be of interest to the membership for three distinct reasons. First, remote instruction is a reality in the near-term but will likely persist in some form. Although many of us prefer to teach in person, remote learning allows us to reach many more participants, including those living in remote and rural areas who cannot easily attend in-person sessions with engineering educators, so it benefits the field to learn how to teach effectively in this way. Second, it describes an emerging approach to engineering education research. Interactional ethnography has been applied in precollege classrooms, but this paper demonstrates how it can also be used in teacher professional development contexts. Third, based on our application of interactional ethnography to an education setting, readers will learn specifically about how to use online collaborative software and how to collect and organize data sources for research purposes. 
    more » « less
  5. International collaborations for community colleges are important for students who will be competing for employment yet are often overlooked due to the perception that international means expensive. The International Education Initiative (IEI) provides opportunities for international collaboration among community college faculty and students. The IEI is a multi-tiered program that allows different levels of participation and cost for faculty and students through funding from the National Science Foundation Advanced Technological Education Program and the French Embassy in the United States. While the main focus is engineering and technology courses, partners have also included business and communications classes, creating a truly interdisciplinary program. Students participating in these programs can expect to have greater cross-cultural maturity and awareness of the wider world, increased confidence in finding future success in the global workforce, and increased ability to deploy 21st Century skills such as technology and teamwork. Faculty participating in the program can expect to have increased confidence and skills in faculty to support students in achieving 21st century skills; increased ability to co-teach and work effectively with and overseas partner, and more motivation and readiness to sustain overseas partnerships and help grow the international program. The Connecticut Collaborative Learning for International Capabilities and Knowledge (CT CLICKs) provides the opportunity for students to receive a global experience as part of a course they are already taking. During the first year of the program, Faculty from Connecticut community colleges partnered with faculty from French Insitituts universitaires de technologie (IUTs), French equivalent of community colleges, to co-teach curriculum modules to their participating classes. The second year added the option of co-facilitating a project between the two classes. All teaching, assignments, and projects were completed through virtual platforms. Several travel opportunities have been provided for student and faculty participants. These have either been through the attendance of international technology bootcamps that were organized by the French Embassy or a partner IUT or through a travel program organized by the IEI. Both travel options include experiences that provide an overview of French engineering and technology education, industry, history, and culture. A faculty recruitment and preparation model has been created to continuously onboard new faculty for the IEI program. The model includes a program overview workshop, partner matching, and curriculum design workshop that all take place virtually. The CT CLICKs program has built steadily and quickly. The number of teachers participating grew from 6 to 29 in the first three years with more than 6 teachers repeating or developing new modules. A total of 334 students have participated in the CT CLICKs program since fall 2017. The number of Connecticut campuses grew from 1 to 8 and overseas partner campuses grew from 2 to 5. Participant survey data shows that the program is continuously improving in helping students gain a better worldview and how to collaborate cross-culturally and helping faculty incorporate international collaboration into their courses. 
    more » « less