Abstract Ensemble‐based data assimilation of radar observations across inner‐core regions of tropical cyclones (TCs) in tandem with satellite all‐sky infrared (IR) radiances across the TC domain improves TC track and intensity forecasts. This study further investigates potential enhancements in TC track, intensity, and rainfall forecasts via assimilation of all‐sky microwave (MW) radiances using Hurricane Harvey (2017) as an example. Assimilating Global Precipitation Measurement constellation all‐sky MW radiances in addition to GOES‐16 all‐sky IR radiances reduces the forecast errors in the TC track, rapid intensification (RI), and peak intensity compared to assimilating all‐sky IR radiances alone, including a 24‐hr increase in forecast lead‐time for RI. Assimilating all‐sky MW radiances also improves Harvey's hydrometeor fields, which leads to improved forecasts of rainfall after Harvey's landfall. This study indicates that avenues exist for producing more accurate forecasts for TCs using available yet underutilized data, leading to better warnings of and preparedness for TC‐associated hazards in the future. 
                        more » 
                        « less   
                    
                            
                            Improving Short-Term QPF Using Geostationary Satellite All-Sky Infrared Radiances: Real-Time Ensemble Data Assimilation and Forecast during the PRECIP 2020 and 2021 Experiments
                        
                    
    
            Abstract The Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP) aims to improve our understanding of extreme rainfall processes in the East Asian summer monsoon. A convection-permitting ensemble-based data assimilation and forecast system (the PSU WRF-EnKF system) was run in real time in the summers of 2020–21 in advance of the 2022 field campaign, assimilating all-sky infrared (IR) radiances from the geostationary Himawari-8 and GOES-16 satellites, and providing 48-h ensemble forecasts every day for weather briefings and discussions. This is the first time that all-sky IR data assimilation has been performed in a real-time forecast system at a convection-permitting resolution for several seasons. Compared with retrospective forecasts that exclude all-sky IR radiances, rainfall predictions are statistically significantly improved out to at least 4–6 h for the real-time forecasts, which is comparable to the time scale of improvements gained from assimilating observations from the dense ground-based Doppler weather radars. The assimilation of all-sky IR radiances also reduced the forecast errors of large-scale environments and helped to maintain a more reasonable ensemble spread compared with the counterpart experiments that did not assimilate all-sky IR radiances. The results indicate strong potential for improving routine short-term quantitative precipitation forecasts using these high-spatiotemporal-resolution satellite observations in the future. Significance Statement During the summers of 2020/21, the PSU WRF-EnKF data assimilation and forecast system was run in real time in advance of the 2022 Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP), assimilating all-sky (clear-sky and cloudy) infrared radiances from geostationary satellites into a numerical weather prediction model and providing ensemble forecasts. This study presents the first-of-its-kind systematic evaluation of the impacts of assimilating all-sky infrared radiances on short-term qualitative precipitation forecasts using multiyear, multiregion, real-time ensemble forecasts. Results suggest that rainfall forecasts are improved out to at least 4–6 h with the assimilation of all-sky infrared radiances, comparable to the influence of assimilating radar observations, with benefits in forecasting large-scale environments and representing atmospheric uncertainties as well. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10436794
- Date Published:
- Journal Name:
- Weather and Forecasting
- Volume:
- 38
- Issue:
- 4
- ISSN:
- 0882-8156
- Page Range / eLocation ID:
- 591 to 609
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract of Purpose and Method: The Lake-Effect Snow Ensemble Reanalysis version 1.0 dataset contains hourly gridded atmospheric variables for the Great Lakes region, focusing on events during the NSF OWLeS field campaign, which took place in December 2013 and January 2014. A reanalysis represents the best estimate of the state of the atmosphere by combining observations that are sparse in space and time with a dynamical model and weighting them by their uncertainties. This reanalysis uses the Penn State University Ensemble Kalman Filter (PSU EnKF) for data assimilation with Weather Research and Forecasting (WRF) model. Observations that are assimilated include conventional surface and atmospheric observations from NOAA. The dataset includes gridded fields of temperature, wind, surface pressure, and precipitation fields, and is downloadable as netCDF files. Companion papers, cited below, further describe this dataset as well as apply it to scientific studies.more » « less
- 
            Abstract Sierras de Córdoba (Argentina) is characterized by the occurrence of extreme precipitation events during the austral warm season. Heavy precipitation in the region has a large societal impact, causing flash floods. This motivates the forecast performance evaluation of 24-h accumulated precipitation and vertical profiles of atmospheric variables from different numerical weather prediction (NWP) models with the final aim of helping water management in the region. The NWP models evaluated include the Global Forecast System (GFS), which parameterizes convection, and convection-permitting simulations of the Weather Research and Forecasting (WRF) Model configured by three institutions: University of Illinois at Urbana–Champaign (UIUC), Colorado State University (CSU), and National Meteorological Service of Argentina (SMN). These models were verified with daily accumulated precipitation data from rain gauges and soundings during the RELAMPAGO-CACTI field campaign. Generally all configurations of the higher-resolution WRFs outperformed the lower-resolution GFS based on multiple metrics. Among the convection-permitting WRF Models, results varied with respect to rainfall threshold and forecast lead time, but the WRFUIUC mostly performed the best. However, elevation-dependent biases existed among the models that may impact the use of the data for different applications. There is a dry (moist) bias in lower (upper) pressure levels which is most pronounced in the GFS. For Córdoba an overestimation of the northern flow forecasted by the NWP configurations at lower levels was encountered. These results show the importance of convection-permitting forecasts in this region, which should be complementary to the coarser-resolution global model forecasts to help various users and decision-makers.more » « less
- 
            Abstract Obtaining a faithful probabilistic depiction of moist convection is complicated by unknown errors in subgrid-scale physical parameterization schemes, invalid assumptions made by data assimilation (DA) techniques, and high system dimensionality. As an initial step toward untangling sources of uncertainty in convective weather regimes, we evaluate a novel Bayesian data assimilation methodology based on particle filtering within a WRF ensemble analysis and forecasting system. Unlike most geophysical DA methods, the particle filter (PF) represents prior and posterior error distributions nonparametrically rather than assuming a Gaussian distribution and can accept any type of likelihood function. This approach is known to reduce bias introduced by Gaussian approximations in low-dimensional and idealized contexts. The form of PF used in this research adopts a dimension-reduction strategy, making it affordable for typical weather applications. The present study examines posterior ensemble members and forecasts for select severe weather events between 2019 and 2020, comparing results from the PF with those from an ensemble Kalman filter (EnKF). We find that assimilating with a PF produces posterior quantities for microphysical variables that are more consistent with model climatology than comparable quantities from an EnKF, which we attribute to a reduction in DA bias. These differences are significant enough to impact the dynamic evolution of convective systems via cold pool strength and propagation, with impacts to forecast verification scores depending on the particular microphysics scheme. Our findings have broad implications for future approaches to the selection of physical parameterization schemes and parameter estimation within preexisting data assimilation frameworks. Significance StatementThe accurate prediction of severe storms using numerical weather models depends on effective parameterization schemes for small-scale processes and the assimilation of incomplete observational data in a manner that faithfully represents the probabilistic state of the atmosphere. Current generation methods for data assimilation typically assume a standard form for the error distributions of relevant quantities, which can introduce bias that not only hinders numerical prediction, but that can also confound the characterization of errors from the model itself. The current study performs data assimilation using a novel method that does not make such assumptions and explores characteristics of resulting model fields and forecasts that might make such a method useful for improving model parameterization schemes.more » « less
- 
            null (Ed.)Abstract Some of the most intense convective storms on Earth initiate near the Sierras de Córdoba mountain range in Argentina. The goal of the RELAMPAGO field campaign was to observe these intense convective storms and their associated impacts. The intense observation period (IOP) occurred during November–December 2018. The two goals of the hydrometeorological component of RELAMPAGO IOP were 1) to perform hydrological streamflow and meteorological observations in previously ungauged basins and 2) to build a hydrometeorological modeling system for hindcast and forecast applications. During the IOP, our team was able to construct the stage–discharge curves in three basins, as hydrological instrumentation and personnel were successfully deployed based on RELAMPAGO weather forecasts. We found that the flood response time in these river locations is typically between 5 and 6 h from the peak of the rain event. The satellite-observed rainfall product IMERG-Final showed a better representation of rain gauge–estimated precipitation, while IMERG-Early and IMERG-Late had significant positive bias. The modeling component focuses on the 48-h simulation of an extreme hydrometeorological event that occurred on 27 November 2018. Using the Weather Research and Forecasting (WRF) atmospheric model and its hydrologic component WRF-Hydro as an uncoupled hydrologic model, we developed a system for hindcast, deterministic forecast, and a 60-member ensemble forecast initialized with regional-scale atmospheric data assimilation. Critically, our results highlight that streamflow simulations using the ensemble forecasting with data assimilation provide realistic flash flood forecast in terms of timing and magnitude of the peak. Our findings from this work are being used by the water managers in the region.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    