Abstract. In steep wildfire-burned terrains, intense rainfall can produce large runoff that can trigger highly destructive debris flows. However, the abilityto accurately characterize and forecast debris flow susceptibility in burned terrains using physics-based tools remains limited. Here, we augmentthe Weather Research and Forecasting Hydrological modeling system (WRF-Hydro) to simulate both overland and channelized flows and assess postfiredebris flow susceptibility over a regional domain. We perform hindcast simulations using high-resolution weather-radar-derived precipitation andreanalysis data to drive non-burned baseline and burn scar sensitivity experiments. Our simulations focus on January 2021 when an atmospheric rivertriggered numerous debris flows within a wildfire burn scar in Big Sur – one of which destroyed California's famous Highway 1. Compared to thebaseline, our burn scar simulation yields dramatic increases in total and peak discharge and shorter lags between rainfall onset and peakdischarge, consistent with streamflow observations at nearby US Geological Survey (USGS) streamflow gage sites. For the 404 catchments located inthe simulated burn scar area, median catchment-area-normalized peak discharge increases by ∼ 450 % compared to the baseline. Catchmentswith anomalously high catchment-area-normalized peak discharge correspond well with post-event field-based and remotely sensed debris flowobservations. We suggest that our regional postfire debris flow susceptibility analysis demonstrates WRF-Hydro as a compelling new physics-basedtool whose utility could be further extended via coupling to sediment erosion and transport models and/or ensemble-based operational weatherforecasts. Given the high-fidelity performance of our augmented version of WRF-Hydro, as well as its potential usage in probabilistic hazardforecasts, we argue for its continued development and application in postfire hydrologic and natural hazard assessments. 
                        more » 
                        « less   
                    
                            
                            Hydrometeorological Observations and Modeling of an Extreme Rainfall Event Using WRF and WRF-Hydro during the RELAMPAGO Field Campaign in Argentina
                        
                    
    
            Abstract Some of the most intense convective storms on Earth initiate near the Sierras de Córdoba mountain range in Argentina. The goal of the RELAMPAGO field campaign was to observe these intense convective storms and their associated impacts. The intense observation period (IOP) occurred during November–December 2018. The two goals of the hydrometeorological component of RELAMPAGO IOP were 1) to perform hydrological streamflow and meteorological observations in previously ungauged basins and 2) to build a hydrometeorological modeling system for hindcast and forecast applications. During the IOP, our team was able to construct the stage–discharge curves in three basins, as hydrological instrumentation and personnel were successfully deployed based on RELAMPAGO weather forecasts. We found that the flood response time in these river locations is typically between 5 and 6 h from the peak of the rain event. The satellite-observed rainfall product IMERG-Final showed a better representation of rain gauge–estimated precipitation, while IMERG-Early and IMERG-Late had significant positive bias. The modeling component focuses on the 48-h simulation of an extreme hydrometeorological event that occurred on 27 November 2018. Using the Weather Research and Forecasting (WRF) atmospheric model and its hydrologic component WRF-Hydro as an uncoupled hydrologic model, we developed a system for hindcast, deterministic forecast, and a 60-member ensemble forecast initialized with regional-scale atmospheric data assimilation. Critically, our results highlight that streamflow simulations using the ensemble forecasting with data assimilation provide realistic flash flood forecast in terms of timing and magnitude of the peak. Our findings from this work are being used by the water managers in the region. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10276240
- Date Published:
- Journal Name:
- Journal of Hydrometeorology
- Volume:
- 22
- Issue:
- 2
- ISSN:
- 1525-755X
- Page Range / eLocation ID:
- 331 to 351
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Hurricanes have been the most destructive and expensive hydrometeorological event in U.S. history, causing catastrophic winds and floods. Hurricane dynamics can significantly impact the amount and spatial extent of storm precipitation. However, the complex interactions of hurricane intensity and precipitation and the impacts of improving hurricane dynamics on streamflow forecasts are not well established yet. This paper addresses these gaps by comprehensively characterizing the role of vertical diffusion in improving hurricane intensity and streamflow forecasts under different planetary boundary layer, microphysics, and cumulus parameterizations. To this end, the Weather Research and Forecasting (WRF) atmospheric model is coupled with the WRF hydrological (WRF-Hydro) model to simulate four major hurricanes landfalling in three hurricane-prone regions in the United States. First, a stepwise calibration is carried out in WRF-Hydro, which remarkably reduces streamflow forecast errors compared to the U.S. Geological Survey (USGS) gauges. Then, 60 coupled hydrometeorological simulations were conducted to evaluate the performance of current weather parameterizations. All schemes were shown to underestimate the observed intensity of the considered major hurricanes since their diffusion is overdissipative for hurricane flow simulations. By reducing the vertical diffusion, hurricane intensity forecasts were improved by ∼39.5% on average compared to the default models. These intensified hurricanes generated more intense and localized precipitation forcing. This enhancement in intensity led to ∼16% and ∼34% improvements in hurricane streamflow bias and correlation forecasts, respectively. The research underscores the role of improved hurricane dynamics in enhancing flood predictions and provides new insights into the impacts of vertical diffusion on hurricane intensity and streamflow forecasts. Significance StatementDespite significant recent improvements, numerical weather prediction models struggle to accurately forecast hurricane intensity and track due to many reasons such as inaccurate physical parameterization for hurricane flows. Furthermore, the performance of existing physics schemes is not well studied for hurricane flood forecasting. This study bridges these knowledge gaps by extensively evaluating different physical parameterizations for hurricane track, intensity, and flood forecasts using an atmospheric model coupled with a hydrological model. Then, a reduced diffusion boundary layer scheme is developed, making remarkable improvements in hurricane intensity forecasts due to the overdissipative nature of the considered schemes for major hurricane simulations. This reduced diffusion model is shown to significantly enhance hurricane flood forecasts, indicating the significance of hurricane dynamics on its induced precipitation.more » « less
- 
            null (Ed.)Abstract The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimilation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting (NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern United States using an object-based analysis framework that decomposes gridded precipitation fields into storm objects. As an alternative to conventional “grid-by-grid analysis,” the object-based approach provides a promising way to diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input data sources. The evolution of two tropical cyclones are generally captured by IMERG and NU-WRF, while the less organized spatial patterns of two mesoscale convective systems pose challenges for both. NU-WRF rain rates are generally more accurate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms compared to smaller, weaker storms. IMERG’s accuracy depends on the input microwave and infrared data sources; NU-WRF does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into satellite precipitation performance and that the satellite precipitation community should further explore the potential for “hybrid” data-driven and physics-driven estimates in order to make optimal usage of satellite observations.more » « less
- 
            Abstract Operational forecast models are necessary for the prediction of weather events in real time. Verification of these models must be performed to assess model skills and areas in need of improvement, particularly with different types of weather events that may occur. Despite the devastating impacts that can be caused by tropical cyclones (TCs) that undergo extratropical transition (ET) and become post-tropical cyclones (PTCs), these storms have not been extensively studied in the context of short-term weather prediction. This study completes the first analysis of the Global Forecast System (GFS) and a preoperational version of the newly operational Hurricane Analysis and Forecast System (HAFS) models in forecasting the occurrence of ET and the rainfall associated with ET storms in the North Atlantic basin. GFS’s skill exceeds that of HAFS in forecasting the occurrence of ET, but HAFS tends to have lower track and rain-rate errors in the fully tropical phase of ET storms’ life cycles. Both models simulate rain rates that are often too high near the storm center and fail to capture the larger area of moderate rain rates that greatly contributes to total rainfall accumulation. The discrepancies in rain rates between the models and Integrated Multi-satellitE Retrievals for GPM (IMERG) could be attributed to the models’ tendency to keep storms too intense and too compact with an overly strong warm core, even throughout the ET process.more » « less
- 
            Abstract Accurate soil moisture and streamflow data are an aspirational need of many hydrologically relevant fields. Model simulated soil moisture and streamflow hold promise but models require validation prior to application. Calibration methods are commonly used to improve model fidelity but misrepresentation of the true dynamics remains a challenge. In this study, we leverage soil parameter estimates from the Soil Survey Geographic (SSURGO) database and the probability mapping of SSURGO (POLARIS) to improve the representation of hydrologic processes in the Weather Research and Forecasting Hydrological modeling system (WRF‐Hydro) over a central California domain. Our results show WRF‐Hydro soil moisture exhibits increased correlation coefficients (r), reduced biases, and increased Kling‐Gupta Efficiencies (KGEs) across seven in situ soil moisture observing stations after updating the model's soil parameters according to POLARIS. Compared to four well‐established soil moisture data sets including Soil Moisture Active Passive data and three Phase 2 North American Land Data Assimilation System land surface models, our POLARIS‐adjusted WRF‐Hydro simulations produce the highest mean KGE (0.69) across the seven stations. More importantly, WRF‐Hydro streamflow fidelity also increases, especially in the case where the model domain is set up with SSURGO‐informed total soil thickness. The magnitude and timing of peak flow events are better captured,rincreases across nine United States Geological Survey stream gages, and the mean KGE across seven of the nine gages increases from 0.12 to 0.66. Our pre‐calibration parameter estimate approach, which is transferable to other spatially distributed hydrological models, can substantially improve a model's performance, helping reduce calibration efforts and computational costs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    