- Award ID(s):
- 2047725
- PAR ID:
- 10436812
- Date Published:
- Journal Name:
- Organic Chemistry Frontiers
- ISSN:
- 2052-4129
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Precise tuning of chemical reactions with predictable and controllable manners, an ultimate goal chemists desire to achieve, is valuable in the scientific community. This tunability is necessary to understand and regulate chemical transformations at both macroscopic and single-molecule levels to meet demands in potential application scenarios. Herein, we realise accurate tuning of a single-molecule Mizoroki-Heck reaction via applying gate voltages as well as complete deciphering of its detailed intrinsic mechanism by employing an in-situ electrical single-molecule detection, which possesses the capability of single-event tracking. The Mizoroki-Heck reaction can be regulated in different dimensions with a constant catalyst molecule, including the molecular orbital gating of Pd(0) catalyst, the on/off switching of the Mizoroki-Heck reaction, the promotion of its turnover frequency, and the regulation of each elementary reaction within the Mizoroki-Heck catalytic cycle. These results extend the tuning scope of chemical reactions from the macroscopic view to the single-molecule approach, inspiring new insights into designing different strategies or devices to unveil reaction mechanisms and discover novel phenomena.more » « less
-
Abstract The Mizoroki–Heck reaction is one of the most efficient methods for alkenylation of aryl, vinyl, and alkyl halides. Given its innate nature, this protocol requires the employment of compounds possessing a halogen atom at the site of functionalization. However, the accessibility of organic molecules possessing a halogen atom at a particular site in aliphatic systems is extremely limited. Thus, a protocol that allows a Heck reaction to occur at a specific nonfunctionalized C(sp3)−H site is desirable. Reported here is a radical relay Heck reaction which allows selective remote alkenylation of aliphatic alcohols at unactivated β‐, γ‐, and δ‐C(sp3)−H sites. The use of an easily installed/removed Si‐based auxiliary enables selective I‐atom/radical translocation events at remote C−H sites followed by the Heck reaction. Notably, the reaction proceeds smoothly under mild visible‐light‐mediated conditions at room temperature, producing highly modifiable and valuable alkenol products from readily available alcohols feedstocks.
-
Abstract The Mizoroki–Heck reaction is one of the most efficient methods for alkenylation of aryl, vinyl, and alkyl halides. Given its innate nature, this protocol requires the employment of compounds possessing a halogen atom at the site of functionalization. However, the accessibility of organic molecules possessing a halogen atom at a particular site in aliphatic systems is extremely limited. Thus, a protocol that allows a Heck reaction to occur at a specific nonfunctionalized C(sp3)−H site is desirable. Reported here is a radical relay Heck reaction which allows selective remote alkenylation of aliphatic alcohols at unactivated β‐, γ‐, and δ‐C(sp3)−H sites. The use of an easily installed/removed Si‐based auxiliary enables selective I‐atom/radical translocation events at remote C−H sites followed by the Heck reaction. Notably, the reaction proceeds smoothly under mild visible‐light‐mediated conditions at room temperature, producing highly modifiable and valuable alkenol products from readily available alcohols feedstocks.
-
The transition metal-catalyzed Mizoroki–Heck reaction is a powerful method to synthesize C–C bonds, allowing access to several important pharmaceuticals. Traditionally free amines have not been compatible with these approaches due to oxidation of the amine by the transition metal or other side reactions. However, the functionalization of unprotected allylamines is particularly attractive due to their prevalence in various biologically active molecules. Herein we report the palladium-catalyzed selective monoarylation of free allylamines using aryl iodides. The strategy works on primary, secondary, and tertiary amines, making it very general. Our monoarylation method is scalable and works on aryl iodides with a variety of substituted arene or heterocycle motifs, including chromophoric substrates.more » « less
-
Development of bioconjugation strategies to efficiently modify biomolecules is of key importance for fundamental and translational scientific studies. Cysteine S-arylation is an approach which is becoming more popular due to generally rapid kinetics and high chemoselectivity, as well as the strong covalently bonded S-aryl linkage created in these processes. Organometallic approaches to cysteine S-arylation have been explored that feature many advantages compared to their more traditional organic counterparts. In this Viewpoint, progress in the use of Au(III) and Pd(II) oxidative addition (OA) complexes for stoichiometric cysteine S-arylation is presented and discussed. A focus is placed on understanding the rapid kinetics of these reactions under mild conditions, as well as the ability to generate biomolecular heterostructures. Potential avenues for further exploration are addressed and usefulness of these methods to the practitioner are emphasized in the discussion.more » « less