Topological boundary modes in electronic and classical-wave systems exhibit fascinating properties. In photonics, topological nature of boundary modes can make them robust and endows them with an additional internal structure—pseudo-spins. Here, we introduce heterogeneous boundary modes, which are based on mixing two of the most widely used topological photonics platforms—the pseudo-spin–Hall-like and valley-Hall photonic topological insulators. We predict and confirm experimentally that transformation between the two, realized by altering the lattice geometry, enables a continuum of boundary states carrying both pseudo-spin and valley degrees of freedom (DoFs). When applied adiabatically, this leads to conversion between pseudo-spin and valley polarization. We show that such evolution gives rise to a geometrical phase associated with the synthetic gauge fields, which is confirmed via an Aharonov-Bohm type experiment on a silicon chip. Our results unveil a versatile approach to manipulating properties of topological photonic states and envision topological photonics as a powerful platform for devices based on synthetic DoFs.
more »
« less
Spin-dependent properties of optical modes guided by adiabatic trapping potentials in photonic Dirac metasurfaces
The Dirac-like dispersion in photonic systems makes it possible to mimic the dispersion of relativistic spin-1/2 particles, which led to the development of the concept of photonic topological insulators. Despite recent demonstrations of various topological photonic phases, the full potential offered by Dirac photonic systems, specifically their ability to emulate the spin degree of freedom—referred to as pseudo-spin—beyond topological boundary modes has remained underexplored. Here we demonstrate that photonic Dirac metasurfaces with smooth one-dimensional trapping gauge potentials serve as effective waveguides with modes carrying pseudo-spin. We show that spatially varying gauge potentials act unevenly on the two pseudo-spins due to their different field distributions, which enables control of guided modes by their spin, a property that is unattainable with conventional optical waveguides. Silicon nanophotonic metasurfaces are used to experimentally confirm the properties of these guided modes and reveal their distinct spin-dependent radiative character; modes of opposite pseudo-spin exhibit disparate radiative lifetimes and couple differently to incident light. The spin-dependent field distributions and radiative lifetimes of their guided modes indicate that photonic Dirac metasurfaces could be used for spin-multiplexing, controlling the characteristics of optical guided modes, and tuning light–matter interactions with photonic pseudo-spins.
more »
« less
- Award ID(s):
- 1809915
- PAR ID:
- 10436858
- Date Published:
- Journal Name:
- Nature Nanotechnology
- ISSN:
- 1748-3387
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Topological photonics allows for the deterministic creation of electromagnetic modes of any dimensionality lesser than that of the system. In the context of two-dimensional systems such as metasurfaces, topological photonics enables trapping of light in 0D cavities defined by boundaries of higher-order topological insulators and topological defects, as well as guiding of optical fields along 1D boundaries between topologically distinct domains. More importantly, it allows engineering interactions of topological modes with radiative continuum, which opens new opportunities to control light-matter interactions, scattering, generation, and emission of light. This review article aims at highlighting recent work in the field focusing on the control of radiation and generation of light in topological metasurfaces.more » « less
-
Metasurfaces have been rapidly advancing our command over the many degrees of freedom of light within compact, lightweight devices. However, so far, they have mostly been limited to manipulating light in free space. Grating couplers provide the opportunity of bridging far-field optical radiation and in-plane guided waves, and thus have become fundamental building blocks in photonic integrated circuits. However, their operation and degree of light control is much more limited than metasurfaces. Metasurfaces integrated on top of guided wave photonic systems have been explored to control the scattering of light off-chip with enhanced functionalities – namely, point-by-point manipulation of amplitude, phase or polarization. However, these efforts have so far been limited to controlling one or two optical degrees of freedom at best, and to device configurations much more complex compared to conventional grating couplers. Here, we introduce leaky-wave metasurfaces, which are based on symmetry-broken photonic crystal slabs that support quasi-bound states in the continuum. This platform has a compact form factor equivalent to the one of conventional grating couplers, but it provides full command over amplitude, phase and polarization (four optical degrees of freedom) across large apertures. We present experimental demonstrations of various functionalities for operation at λ= 1.55 μm based on leaky-wave metasurfaces, including devices for phase and amplitude control at a fixed polarization state, and devices controlling all four optical degrees of freedom. Our results merge the fields of guided and free-space optics under the umbrella of metasurfaces, exploiting the hybrid nature of quasi-bound states in the continuum, for opportunities to advance in disruptive ways imaging, communications, augmented reality, quantum optics, LIDAR, and integrated photonic systems.more » « less
-
Abstract The rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. Topological polaritons (TPs) offer an ideal platform in this context, with unique properties stemming from resilient topological states of light strongly coupled with matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalcogenides (TMDs) as a promising platform for topological polaritonics. We show that the strong coupling between topological photonic modes of the metasurface and excitons in TMDs yields a topological polaritonic Z2phase. We experimentally confirm the emergence of one-way spin-polarized edge TPs in metasurfaces integrating MoSe2and WSe2. Combined with the valley polarization in TMD monolayers, the proposed system enables an approach to engage the photonic angular momentum and valley and spin of excitons, offering a promising platform for photonic/solid-state interfaces for valleytronics and spintronics.more » « less
-
We develop a microscopic diagrammatic theory for cavity-mediated photon scattering in a topological one-dimensional insulator described by the Su–Schrieffer–Heeger model. Within the velocity-gauge formulation, we derive the photon self-energy and vertex corrections arising from virtual electron–hole excitations coupled to a quantized cavity mode, and we evaluate the resulting polariton dispersion and two-photon correlation spectra. Our analysis shows that vacuum fluctuations of the cavity field induce a momentum-resolved self-energy that mixes conduction and valence bands through virtual photon exchange, producing interband hybridization and avoided crossings in the electronic dispersion. This “cavity dressing” is symmetry-dependent, vanishing at the Brillouin-zone edge where the dipole matrix element is zero, and its strength is controlled by the spatial coherence range ζ≈(lc/a)2 of virtual excitations. We further examine how the cavity modifies nonlinear optical observables, including the Kerr nonlinearity and biphoton spectral entanglement, and identify the regimes where these effects become sensitive to the underlying topological phase. The theoretical framework established here provides a unified description of light–matter coupling in topological and polaritonic systems, bridging solid-state cavity QED with the emerging field of cavity-modified quantum materials. Our results suggest that engineered photonic environments can coherently reshape the electronic landscape of topological insulators, offering new routes to control collective electronic and optical phenomena through vacuum-field fluctuations.more » « less
An official website of the United States government

