skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iron-peak Element Abundances in Warm Very Metal-poor Stars
Abstract We have derived new detailed abundances of Mg, Ca, and the Fe-group elements Sc through Zn (Z= 21−30) for 37 main-sequence turnoff very metal-poor stars ([Fe/H] ≲−2.1). We analyzed Keck HIRES optical and near-UV high signal-to-noise spectra originally gathered for a Be abundance survey. Using typically ∼400 Fe-group lines with accurate laboratory transition probabilities for each star, we have determined accurate LTE metallicities and abundance ratios for neutral and ionized species of the 10 Fe-group elements as well asαelements Mg and Ca. We find good neutral/ion abundance agreement for the six elements that have detectable transitions of both species in our stars in the 3100–5800 Å range. Earlier reports of correlated Sc−Ti−V relative overabundances are confirmed, and appear to slowly increase with decreasing metallicity. To this element trio we add Zn; it also appears to be increasingly overabundant in the lowest-metallicity regimes. Co appears to mimic the behavior of Zn, but issues surrounding its abundance reliability cloud its interpretation.  more » « less
Award ID(s):
2206050 1814512 2205847
PAR ID:
10436921
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
953
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 31
Size(s):
Article No. 31
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Studying the abundances in metal-poor globular clusters is crucial for understanding the formation of the Galaxy and the nucleosynthesis processes in the early Universe. We observed 13 red-giant stars from the metal-poor globular cluster NGC 2298 using the newly commissioned GHOST spectrograph at Gemini South. We derived stellar parameters and abundances for 36 species across 32 elements, including 16 neutron-capture elements. We find that the stars exhibit chemical anomalies among the light elements, allowing us to classify them into first generation (eight stars) and second generation (five stars). We derive a mean cluster metallicity of [Fe/H] = −1.98 ± 0.10 with no significant variation among cluster members. Mostα- and Fe-peak elements display low star-to-star abundance dispersion, with notable exceptions for Sc, Ni, and Zn for which the dispersions in Sc vary significantly between stars from different generations to 2σlevels. Similarly, among the neutron-capture elements, we observed considerable differences in dispersion for Sr and Eu among the first and second generation stars to 2σlevels. We also confirm an intrinsic scatter beyond observational uncertainties for several elements using a maximum likelihood approach among stars from different generations. Additionally, we note an increase in [Sr/Eu] and [Ba/Eu] with [Mg/Fe] in first-generation stars indicating correlations between the productions of lightrprocess and Mg. We find the universalr-process pattern, but with larger dispersions in the mainrprocess than the limited-relements. These differences in abundance dispersion, among first- and second-generation stars in NGC 2298, suggest complex and inhomogeneous early chemical enrichment processes, driven by contributions from multiple nucleosynthetic events, including massive stars and rarer-process events. 
    more » « less
  2. Abstract We present the stellar parameters and chemical abundances of 30 elements for five stars located at large radii (3.5–10.7 times the half-light radius) in the Sextans dwarf spheroidal galaxy. We selected these stars using proper motions, radial velocities, and metallicities, and we confirm them as metal-poor members of Sextans with −3.34 ≤ [Fe/H] ≤ −2.64 using high-resolution optical spectra collected with the Magellan Inamori Kyocera Echelle spectrograph. Four of the five stars exhibit normal abundances of C (−0.34 ≤ [C/Fe] ≤ + 0.36), mild enhancement of theαelements Mg, Si, Ca, and Ti ([α/Fe] = +0.12 ± 0.03), and unremarkable abundances of Na, Al, K, Sc, V, Cr, Mn, Co, Ni, and Zn. We identify three chemical signatures previously unknown among stars in Sextans. One star exhibits large overabundances ([X/Fe] > +1.2) of C, N, O, Na, Mg, Si, and K, and large deficiencies of heavy elements ([Sr/Fe] = −2.37 ± 0.25, [Ba/Fe] = −1.45 ± 0.20, [Eu/Fe] < + 0.05), establishing it as a member of the class of carbon-enhanced metal-poor stars with no enhancement of neutron-capture elements. Three stars exhibit moderate enhancements of Eu (+0.17 ≤ [Eu/Fe] ≤ + 0.70), and the abundance ratios among 12 neutron-capture elements are indicative ofr-process nucleosynthesis. Another star is highly enhanced in Sr relative to heavier elements ([Sr/Ba] = +1.21 ± 0.25). These chemical signatures can all be attributed to massive, low-metallicity stars or their end states. Our results, the first for stars at large radius inSextans, demonstrate that these stars were formed in chemically inhomogeneous regions, such as those found in ultra-faint dwarf galaxies. 
    more » « less
  3. ABSTRACT Recently, a new cylindrical-shaped stream of stars up to 700 pc long was discovered hiding in the Galactic disc using kinematic data enabled by the Gaia mission. This stream of stars, dubbed Pisces–Eridanus (Psc–Eri), was initially thought to be as old as 1 Gyr, yet its stars shared a rotation period distribution consistent with a population that was 120 Myr old. Here, we explore the detailed chemical nature of this stellar stream. We carried out high-resolution spectroscopic follow-up of 42 Psc–Eri stars using McDonald Observatory and combined these data with information for 40 members observed with the low-resolution LAMOST spectroscopic survey. Together, these data enabled us to measure the abundance distribution of light/odd-Z (Li, Na, Al, Sc, V), α (Mg, Si, Ca, Ti), Fe-peak (Cr, Mn, Fe, Co, Ni, Zn), and neutron capture (Sr, Y, Zr, Ba, La, Nd, Eu) elements along the Psc–Eri stream. We find that the stream is (1) near-solar metallicity with [Fe/H] = –0.03 dex and (2) has a metallicity spread of 0.07 dex (or 0.04 dex when outliers are excluded). We also find that (3) the abundance of Li indicates that Psc–Eri is ∼120 Myr old, consistent with its gyrochronology age. Additionally, Psc–Eri has (4) [X/Fe] abundance spreads that are just larger than the typical uncertainty in most elements, (5) it is a cylindrical-like system whose outer edges rotate about the centre, and (6) no significant abundance gradients along its major axis except a potentially weak gradient in [Si/Fe]. These results show that Psc–Eri is a uniquely close young chemically interesting laboratory for testing our understanding of star and planet formation. 
    more » « less
  4. We report the first high-resolution, detailed abundances of 21 elements for giants in the Galactic bulge/bar within 1° of the Galactic plane, where high extinction has rendered such studies challenging. Our high-signal-to-noise-ratio and high-resolution, near-infrared spectra of seven M giants in the inner bulge, located at (l,b) = (0°, +1°), are observed using the IGRINS spectrograph. We report the first multichemical study of the inner Galactic bulge by investigating, relative to a robust new solar neighborhood sample, the abundance trends of 21 elements, including the relatively difficult to study heavy elements. The elements studied are: F, Mg, Si, S, Ca, Na, Al, K, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Ce, Nd, and Yb. We investigate bulge membership of all seven stars using distances and orbital simulations, and we find that the most metal-poor star may be a halo interloper. Our investigation also shows that the inner bulge as close as 1° north of the Galactic Center displays a similarity to the inner disk sequence, following the high-[α/Fe] envelope of the solar vicinity metal-rich population, though no firm conclusions for a different enrichment history are evident from this sample. We find a small fraction of metal-poor stars ([Fe/H] > −0.5), but most of our stars are mainly of supersolar metallicity. Fluorine is found to be enhanced at high metallicity compared to the solar neighborhood, but confirmation with a larger sample is required. We will apply this approach to explore the populations of the nuclear stellar disk and the nuclear star cluster. 
    more » « less
  5. ABSTRACT We present a comprehensive analysis of the detailed chemical abundances for a sample of 11 metal-poor, very metal-poor, and extremely metal-poor stars ([Fe/H] = −1.65 to [Fe/H]  = −3.0) as part of the HESP-GOMPA (Galactic survey Of Metal Poor stArs) survey. The abundance determinations encompass a range of elements, including C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, and Ba, with a subset of the brighter objects allowing for the measurement of additional key elements. Notably, the abundance analysis of a relatively bright highly r-process-enhanced (r-II) star (SDSS J0019+3141) exhibits a predominantly main r-process signature and variations in the lighter r-process elements. Moreover, successful measurements of thorium in this star facilitate stellar age determinations. We find a consistent odd–even nucleosynthesis pattern in these stars, aligning with expectations for their respective metallicity levels, thus implicating Type II supernovae as potential progenitors. From the interplay between the light and heavy r-process elements, we infer a diminishing relative production of light r-process elements with increasing Type II supernova contributions, challenging the notion that Type II supernovae are the primary source of these light r-process elements in the early Milky Way. A chemodynamical analysis based on Gaia astrometric data and our derived abundances indicates that all but one of our program stars are likely to be of accreted origin. Additionally, our examination of α-poor stars underscores the occurrence of an early accretion event from a satellite on a prograde orbit, similar to that of the Galactic disc. 
    more » « less