Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report new branching fraction (BF) measurements for 156 ultraviolet and optical transitions of Gdii. These transitions range in wavelength (wavenumber) from 2574 to 6766 Å (38,838–14,777 cm−1) and originate in one odd-parity and 11 even-parity upper levels. Nine of the 12 levels, accounting for 126 of the 156 transitions, are studied for the first time. BFs are determined for three levels studied previously for the purpose of comparison. The levels studied for the first time are high lying, ranging in energy from 36,845 to 40,774 cm−1. The BFs are determined from emission spectra from two different high-resolution spectrometers. These are combined with radiative lifetimes reported in an earlier study to produce a set of transition probabilities and log(gf) values with accuracy ranging from 5% to 30%. Comparison is made to experimental and theoretical transition probabilities from the literature where such data exist. Abundances derived from these new log(gf) values for 21 Gdiilines in two metal-poor stars yield results consistent with previous studies, and they demonstrate that the new log(gf) values can be used in stellar abundance analysis as a self-consistent extension of previous work.more » « lessFree, publicly-accessible full text available April 17, 2026
-
Abstract We report new branching fraction measurements for 224 ultraviolet and optical transitions of Tmii. These transitions range in wavelength (wavenumber) from 2350 to 6417 Å (42,532–15,579 cm−1) and originate in 13 odd-parity and 24 even-parity upper levels. Thirty-five of the 37 levels, accounting for 213 of the 224 transitions, are studied for the first time. Branching fractions are determined for two levels studied previously for comparison to earlier results. The levels studied for the first time are high lying, ranging in energy from 35,753 to 54,989 cm−1. The branching fractions are determined from emission spectra from two different high-resolution spectrometers. These are combined with radiative lifetimes reported in an earlier study to produce a set of transition probabilities and log(gf) values with accuracy ranging from 5% to 30%. Comparison is made to experimental and theoretical transition probabilities from the literature where such data exist. These new log(gf) values are used to derive an abundance from one previously unused Tmiiline in the UV spectrum of ther-process-enhanced metal-poor star HD 222925, and this abundance is consistent with previous determinations based on other Tmiilines.more » « less
-
Abstract We have derived new detailed abundances of Mg, Ca, and the Fe-group elements Sc through Zn (Z= 21−30) for 37 main-sequence turnoff very metal-poor stars ([Fe/H] ≲−2.1). We analyzed Keck HIRES optical and near-UV high signal-to-noise spectra originally gathered for a Be abundance survey. Using typically ∼400 Fe-group lines with accurate laboratory transition probabilities for each star, we have determined accurate LTE metallicities and abundance ratios for neutral and ionized species of the 10 Fe-group elements as well asαelements Mg and Ca. We find good neutral/ion abundance agreement for the six elements that have detectable transitions of both species in our stars in the 3100–5800 Å range. Earlier reports of correlated Sc−Ti−V relative overabundances are confirmed, and appear to slowly increase with decreasing metallicity. To this element trio we add Zn; it also appears to be increasingly overabundant in the lowest-metallicity regimes. Co appears to mimic the behavior of Zn, but issues surrounding its abundance reliability cloud its interpretation.more » « less
-
Abstract We report new measurements of branching fractions for 20 UV and blue lines in the spectrum of neutral silicon (Sii) originating in the 3s23p4s3Po1,2,1Po1, and 3s3p31Do1,2upper levels. Transitions studied include both strong, nearly pure LS multiplets as well as very weak spin-forbidden transitions connected to these upper levels. We also report a new branching fraction measurement of the4P1/2–2Po1/2,3/2intercombination lines in the spectrum of singly ionized silicon (Siii). The weak spin-forbidden lines of Siiand Siiiprovide a stringent test on recent theoretical calculations, to which we make comparison. The branching fractions from this study are combined with previously reported radiative lifetimes to yield transition probabilities and log(gf) values for these lines. We apply these new measurements to abundance determinations in five metal-poor stars.more » « less
An official website of the United States government
