skip to main content

Title: FedDebug: Systematic Debugging for Federated Learning Applications
In Federated Learning (FL), clients independently train local models and share them with a central aggregator to build a global model. Impermissibility to access clients' data and collaborative training make FL appealing for applications with data-privacy concerns, such as medical imaging. However, these FL characteristics pose unprecedented challenges for debugging. When a global model's performance deteriorates, identifying the responsible rounds and clients is a major pain point. Developers resort to trial-and-error debugging with subsets of clients, hoping to increase the global model's accuracy or let future FL rounds retune the model, which are time-consuming and costly. We design a systematic fault localization framework, Fedde-bug,that advances the FL debugging on two novel fronts. First, Feddebug enables interactive debugging of realtime collaborative training in FL by leveraging record and replay techniques to construct a simulation that mirrors live FL. Feddebug'sbreakpoint can help inspect an FL state (round, client, and global model) and move between rounds and clients' models seam-lessly, enabling a fine-grained step-by-step inspection. Second, Feddebug automatically identifies the client(s) responsible for lowering the global model's performance without any testing data and labels-both are essential for existing debugging techniques. Feddebug's strengths come from adapting differential testing in conjunction with neuron activations to determine the client(s) deviating from normal behavior. Feddebug achieves 100% accuracy in finding a single faulty client and 90.3% accuracy in finding multiple faulty clients. Feddebug's interactive de-bugging incurs 1.2% overhead during training, while it localizes a faulty client in only 2.1% of a round's training time. With FedDebug,we bring effective debugging practices to federated learning, improving the quality and productivity of FL application developers.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE/ACM 45th International Conference on Software Engineering
Page Range / eLocation ID:
512 to 523
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Federated learning (FL) is a collaborative machine-learning (ML) framework particularly suited for ML models requiring numerous training samples, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Random Forest, in the context of various applications, e.g., next-word prediction and eHealth. FL involves various clients participating in the training process by uploading their local models to an FL server in each global iteration. The server aggregates these models to update a global model. The traditional FL process may encounter bottlenecks, known as the straggler problem, where slower clients delay the overall training time. This paper introduces the Latency-awarE Semi-synchronous client Selection and mOdel aggregation for federated learNing (LESSON) method. LESSON allows clients to participate at different frequencies: faster clients contribute more frequently, therefore mitigating the straggler problem and expediting convergence. Moreover, LESSON provides a tunable trade-off between model accuracy and convergence rate by setting varying deadlines. Simulation results show that LESSON outperforms two baseline methods, namely FedAvg and FedCS, in terms of convergence speed and maintains higher model accuracy compared to FedCS.

    more » « less
  2. Federated Learning (FL) enables multiple clients to collaboratively learn a machine learning model without exchanging their own local data. In this way, the server can exploit the computational power of all clients and train the model on a larger set of data samples among all clients. Although such a mechanism is proven to be effective in various fields, existing works generally assume that each client preserves sufficient data for training. In practice, however, certain clients can only contain a limited number of samples (i.e., few-shot samples). For example, the available photo data taken by a specific user with a new mobile device is relatively rare. In this scenario, existing FL efforts typically encounter a significant performance drop on these clients. Therefore, it is urgent to develop a few-shot model that can generalize to clients with limited data under the FL scenario. In this paper, we refer to this novel problem as federated few-shot learning. Nevertheless, the problem remains challenging due to two major reasons: the global data variance among clients (i.e., the difference in data distributions among clients) and the local data insufficiency in each client (i.e., the lack of adequate local data for training). To overcome these two challenges, we propose a novel federated few-shot learning framework with two separately updated models and dedicated training strategies to reduce the adverse impact of global data variance and local data insufficiency. Extensive experiments on four prevalent datasets that cover news articles and images validate the effectiveness of our framework compared with the state-of-the-art baselines. 
    more » « less
  3. A central theme in federated learning (FL) is the fact that client data distributions are often not independent and identically distributed (IID), which has strong implications on the training process. While most existing FL algorithms focus on the conventional non-IID setting of class imbalance or missing classes across clients, in practice, the distribution differences could be more complex, e.g., changes in class conditional (domain) distributions. In this paper, we consider this complex case in FL wherein each client has access to only one domain distribution. For tasks such as domain generalization, most existing learning algorithms require access to data from multiple clients (i.e., from multiple domains) during training, which is prohibitive in FL. To address this challenge, we propose a federated domain translation method that generates pseudodata for each client which could be useful for multiple downstream learning tasks. We empirically demonstrate that our translation model is more resource-efficient (in terms of both communication and computation) and easier to train in an FL setting than standard domain translation methods. Furthermore, we demonstrate that the learned translation model enables use of state-of-the-art domain generalization methods in a federated setting, which enhances accuracy and robustness to increases in the synchronization period compared to existing methodology. 
    more » « less
  4. Federated Learning (FL) enables edge devices or clients to collaboratively train machine learning (ML) models without sharing their private data. Much of the existing work in FL focuses on efficiently learning a model for a single task. In this paper, we study simultaneous training of multiple FL models using a common set of clients. The few existing simultaneous training methods employ synchronous aggregation of client updates, which can cause significant delays because large models and/or slow clients can bottleneck the aggregation. On the other hand, a naive asynchronous aggregation is adversely affected by stale client updates. We propose FedAST, a buffered asynchronous federated simultaneous training algorithm that overcomes bottlenecks from slow models and adaptively allocates client resources across heterogeneous tasks. We provide theoretical convergence guarantees of FedAST for smooth non-convex objective functions. Extensive experiments over multiple real-world datasets demonstrate that our proposed method outperforms existing simultaneous FL approaches, achieving up to 46.0% reduction in time to train multiple tasks to completion. 
    more » « less
  5. Standard federated learning (FL) algorithms typically require multiple rounds of communication between the server and the clients, which has several drawbacks, including requiring constant network connectivity, repeated investment of computational resources, and susceptibility to privacy attacks. One-Shot FL is a new paradigm that aims to address this challenge by enabling the server to train a global model in a single round of communication. In this work, we present FedFisher, a novel algorithm for one-shot FL that makes use of Fisher information matrices computed on local client models, motivated by a Bayesian perspective of FL. First, we theoretically analyze FedFisher for two-layer over-parameterized ReLU neural networks and show that the error of our one-shot FedFisher global model becomes vanishingly small as the width of the neural networks and amount of local training at clients increases. Next, we propose practical variants of FedFisher using the diagonal Fisher and K-FAC approximation for the full Fisher and highlight their communication and compute efficiency for FL. Finally, we conduct extensive experiments on various datasets, which show that these variants of FedFisher consistently improve over competing baselines. 
    more » « less