Abstract We develop a Newtonian model of a deep tidal disruption event (TDE), for which the pericenter distance of the star, r p , is well within the tidal radius of the black hole, r t , i.e., when β ≡ r t / r p ≫ 1. We find that shocks form for β ≳ 3, but they are weak (with Mach numbers ∼1) for all β , and that they reach the center of the star prior to the time of maximum adiabatic compression for β ≳ 10. The maximum density and temperature reached during the TDE follow much shallower relations with β than the previously predicted ρ max ∝ β 3 and T max ∝ β 2 scalings. Below β ≃ 10, this shallower dependence occurs because the pressure gradient is dynamically significant before the pressure is comparable to the ram pressure of the free-falling gas, while above β ≃ 10, we find that shocks prematurely halt the compression and yield the scalings ρ max ∝ β 1.62 and T max ∝ β 1.12 . We find excellent agreement between our results and high-resolution simulations. Our results demonstrate that, in the Newtonian limit, the compression experienced by the star is completely independent of the mass of the black hole. We discuss our results in the context of existing (affine) models, polytropic versus non-polytropic stars, and general relativistic effects, which become important when the pericenter of the star nears the direct capture radius, at β ∼ 12.5 (2.7) for a solar-like star disrupted by a 10 6 M ⊙ (10 7 M ⊙ ) supermassive black hole.
more »
« less
Stars Crushed by Black Holes. III. Mild Compression of Radiative Stars by Supermassive Black Holes
Abstract A tidal disruption event (TDE) occurs when the gravitational field of a supermassive black hole (SMBH) destroys a star. For TDEs in which the star enters deep within the tidal radius, such that the ratio of the tidal radius to the pericenter distance β satisfies β ≫ 1, the star is tidally compressed and heated. It was predicted that the maximum density and temperature attained during deep TDEs scale as ∝ β 3 and ∝ β 2 , respectively, and nuclear detonation is triggered by β ≳ 5, but these predictions have been debated over the last four decades. We perform Newtonian smoothed-particle hydrodynamics simulations of deep TDEs between a Sun-like star and a 10 6 M ⊙ SMBH for 2 ≤ β ≤ 10. We find that neither the maximum density nor temperature follow the ∝ β 3 and ∝ β 2 scalings or, for that matter, any power-law dependence, and that the maximum-achieved density and temperature are reduced by ∼1 order of magnitude compared to past predictions. We also perform simulations in the Schwarzschild metric and find that relativistic effects modestly increase the maximum density (by a factor of ≲1.5) and induce a time lag relative to the Newtonian simulations, which is induced by time dilation. We also confirm that the time the star spends at high density and temperature is a very small fraction of its dynamical time. We therefore predict that the amount of nuclear burning achieved by radiative stars during deep TDEs is minimal.
more »
« less
- Award ID(s):
- 2006684
- PAR ID:
- 10437007
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 939
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 71
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tidal disruption events (TDEs) provide a unique opportunity to probe the stellar populations around supermassive black holes (SMBHs). By combining light-curve modeling with spectral line information and knowledge about the stellar populations in the host galaxies, we are able to constrain the properties of the disrupted star for three TDEs. The TDEs in our sample have UV spectra, and measurements of the UV N iii to C iii line ratios enabled estimates of the nitrogen-to-carbon abundance ratios for these events. We show that the measured nitrogen line widths are consistent with originating from the disrupted stellar material dispersed by the central SMBH. We find that these nitrogen-to-carbon abundance ratios necessitate the disruption of moderately massive stars (≳1–2 M ⊙ ). We determine that these moderately massive disruptions are overrepresented by a factor of ≳10 2 when compared to the overall stellar population of the post-starburst galaxy hosts. This implies that SMBHs are preferentially disrupting higher mass stars, possibly due to ongoing top-heavy star formation in nuclear star clusters or to dynamical mechanisms that preferentially transport higher mass stars to their tidal radii.more » « less
-
ABSTRACT A star destroyed by a supermassive black hole (SMBH) in a tidal disruption event (TDE) enables the study of SMBHs. We propose that the distance within which a star is completely destroyed by an SMBH, defined rt,c, is accurately estimated by equating the SMBH tidal field (including numerical factors) to the maximum gravitational field in the star. We demonstrate that this definition accurately reproduces the critical βc = rt/rt,c, where rt = R⋆(M•/M⋆)1/3 is the standard tidal radius with R⋆ and M⋆ the stellar radius and mass, and M• the SMBH mass, for multiple stellar progenitors at various ages, and can be reasonably approximated by βc ≃ [ρc/(4ρ⋆)]1/3, where ρc (ρ⋆) is the central (average) stellar density. We also calculate the peak fallback rate and time at which the fallback rate peaks, finding excellent agreement with hydrodynamical simulations, and also suggest that the partial disruption radius – the distance at which any mass is successfully liberated from the star – is βpartial ≃ 4−1/3 ≃ 0.6. For given stellar and SMBH populations, this model yields, e.g. the fraction of partial TDEs, the peak luminosity distribution of TDEs, and the number of directly captured stars.more » « less
-
ABSTRACT Stars that plunge into the centre of a galaxy are tidally perturbed by a supermassive black hole (SMBH), with closer encounters resulting in larger perturbations. Exciting these tides comes at the expense of the star’s orbital energy, which leads to the naive conclusion that a smaller pericentre (i.e. a closer encounter between the star and SMBH) always yields a more tightly bound star to the SMBH. However, once the pericentre distance is small enough that the star is partially disrupted, morphological asymmetries in the mass lost by the star can yield an increase in the orbital energy of the surviving core, resulting in its ejection – not capture – by the SMBH. Using smoothed particle hydrodynamics simulations, we show that the combination of these two effects – tidal excitation and asymmetric mass-loss – results in a maximum amount of energy lost through tides of $$\sim 2.5{{\ \rm per\ cent}}$$ of the binding energy of the star, which is significantly smaller than the theoretical maximum of the total stellar binding energy. This result implies that stars that are repeatedly partially disrupted by SMBHs many (≳10) times on short-period orbits (≲few years), as has been invoked to explain the periodic nuclear transient ASASSN-14ko and quasi-periodic eruptions, must be bound to the SMBH through a mechanism other than tidal capture, such as a dynamical exchange (i.e. Hills capture).more » « less
-
Abstract The distribution of orbital energies imparted into stellar debris following the close encounter of a star with a supermassive black hole is the principal factor in determining the rate of return of debris to the black hole, and thus in determining the properties of the resulting lightcurves from such events. We present simulations of tidal disruption events for a range of β ≡ r t / r p where r p is the pericenter distance and r t the tidal radius. We perform these simulations at different spatial resolutions to determine the numerical convergence of our models. We compare simulations in which the heating due to shocks is included or excluded from the dynamics. For β ≲ 8, the simulation results are well-converged at sufficiently moderate-to-high spatial resolution, while for β ≳ 8, the breadth of the energy distribution can be grossly exaggerated by insufficient spatial resolution. We find that shock heating plays a non-negligible role only for β ≳ 4, and that typically the effect of shock heating is mild. We show that self-gravity can modify the energy distribution over time after the debris has receded to large distances for all β . Primarily, our results show that across a range of impact parameters, while the shape of the energy distribution varies with β , the width of the energy spread imparted to the bulk of the debris is closely matched to the canonical spread, Δ E = GM • R ⋆ / r t 2 , for the range of β we have simulated.more » « less
An official website of the United States government

