skip to main content


Title: Single particle measurements of mixing between mimics for biomass burning and aged secondary organic aerosols
Gas-phase exchange between aerosol populations via evaporation and condensation of semi-volatile organics can be a major mechanism of mixing between accumulation-mode particles with slow coagulation. This exchange may be impeded in highly viscous, semi-solid, or glassy particles due to diffusion limitations. Here we describe experiments on carefully prepared particle populations representing highly viscous or potentially “glassy” aged organic particles (non-volatile sugars 13 C-glucose, sucrose, and raffinose with ammonium sulfate seeds) and fresh biomass burning particles (erythritol with black carbon seeds) to develop a model phase space for organic aerosol systems and better understand when particle phase state impedes mixing. Our hypothesis is that these limitations are alleviated at some relative humidity threshold, which increases with decreasing ambient temperatures. We quantify the mixing state of these particle populations from 10–25 °C and 5–90% RH using an Aerosol Mass Spectrometer (AMS) combining Event Trigger (ET) and Soot Particle (SP) modes. The observed single particle mass spectra are aggregated in short time slices and used to perform a linear combination of relevant reference spectra to determine the contributions each constituent has on the resulting particle signal. Our results suggest that the non-volatile sugar particles have little to no diffusive limitations to mixing at the conditions tested.  more » « less
Award ID(s):
1807530
NSF-PAR ID:
10437029
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Environmental Science: Atmospheres
Volume:
2
Issue:
4
ISSN:
2634-3606
Page Range / eLocation ID:
727 to 737
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Evidence has accumulated that secondary organic aerosols (SOAs) exhibit complex morphologies with multiple phases that can adopt amorphous semisolid or glassy phase states. However, experimental analysis and numerical modeling on the formation and evolution of SOA still often employ equilibrium partitioning with an ideal mixing assumption in the particle phase. Here we apply the kinetic multilayer model of gas–particle partitioning (KM-GAP) to simulate condensation of semi-volatile species into a core–shell phase-separated particle to evaluate equilibration timescales of SOA partitioning. By varying bulk diffusivity and the activity coefficient of the condensing species in the shell, we probe the complex interplay of mass transfer kinetics and the thermodynamics of partitioning. We found that the interplay of non-ideality and phase state can impact SOA partitioning kinetics significantly. The effect of non-ideality on SOA partitioning is slight for liquid particles but becomes prominent in semisolid or solid particles. If the condensing species is miscible with a low activity coefficient in the viscous shell phase, the particle can reach equilibrium with the gas phase long before the dissolution of concentration gradients in the particle bulk. For the condensation of immiscible species with a high activity coefficient in the semisolid shell, the mass concentration in the shell may become higher or overshoot its equilibrium concentration due to slow bulk diffusion through the viscous shell for excess mass to be transferred to the core phase. Equilibration timescales are shorter for the condensation of lower-volatility species into semisolid shell; as the volatility increases, re-evaporation becomes significant as desorption is faster for volatile species than bulk diffusion in a semisolid matrix, leading to an increase in equilibration timescale. We also show that the equilibration timescale is longer in an open system relative to a closed system especially for partitioning of miscible species; hence, caution should be exercised when interpreting and extrapolating closed-system chamber experimental results to atmosphere conditions. Our results provide a possible explanation for discrepancies between experimental observations of fast particle–particle mixing and predictions of long mixing timescales in viscous particles and provide useful insights into description and treatment of SOA in aerosol models. 
    more » « less
  2. Abstract. Secondary organic aerosols (SOA) account for a substantial fraction of airparticulate matter, and SOA formation is often modeled assuming rapidestablishment of gas–particle equilibrium. Here, we estimate thecharacteristic timescale for SOA to achieve gas–particle equilibrium undera wide range of temperatures and relative humidities using astate-of-the-art kinetic flux model. Equilibration timescales werecalculated by varying particle phase state, size, mass loadings, andvolatility of organic compounds in open and closed systems. Modelsimulations suggest that the equilibration timescale for semi-volatilecompounds is on the order of seconds or minutes for most conditions in theplanetary boundary layer, but it can be longer than 1 h if particlesadopt glassy or amorphous solid states with high glass transitiontemperatures at low relative humidity. In the free troposphere with lowertemperatures, it can be longer than hours or days, even at moderate orrelatively high relative humidities due to kinetic limitations of bulkdiffusion in highly viscous particles. The timescale of partitioning oflow-volatile compounds into highly viscous particles is shorter compared tosemi-volatile compounds in the closed system, as it is largely determined bycondensation sink due to very slow re-evaporation with relatively quickestablishment of local equilibrium between the gas phase and thenear-surface bulk. The dependence of equilibration timescales on bothvolatility and bulk diffusivity provides critical insights intothermodynamic or kinetic treatments of SOA partitioning for accuratepredictions of gas- and particle-phase concentrations of semi-volatilecompounds in regional and global chemical transport models. 
    more » « less
  3. null (Ed.)
    Abstract. Mass accommodation is an essential process for gas–particle partitioning oforganic compounds in secondary organic aerosols (SOA). The massaccommodation coefficient is commonly described as the probability of a gasmolecule colliding with the surface to enter the particle phase. It is oftenapplied, however, without specifying if and how deep a molecule has topenetrate beneath the surface to be regarded as being incorporated into thecondensed phase (adsorption vs. absorption). While this aspect is usuallynot critical for liquid particles with rapid surface–bulk exchange, it canbe important for viscous semi-solid or glassy solid particles to distinguishand resolve the kinetics of accommodation at the surface, transfer acrossthe gas–particle interface, and further transport into the particle bulk. For this purpose, we introduce a novel parameter: an effective massaccommodation coefficient αeff that depends on penetrationdepth and is a function of surface accommodation coefficient, volatility,bulk diffusivity, and particle-phase reaction rate coefficient. Applicationof αeff in the traditional Fuchs–Sutugin approximation ofmass-transport kinetics at the gas–particle interface yields SOApartitioning results that are consistent with a detailed kinetic multilayermodel (kinetic multilayer model of gas–particle interactions in aerosols and clouds, KM-GAP; Shiraiwa et al., 2012) and two-film model solutions (Modelfor Simulating Aerosol Interactions and Chemistry, MOSAIC;Zaveri et al., 2014) but deviate substantially from earlier modelingapproaches not considering the influence of penetration depth and relatedparameters. For highly viscous or semi-solid particles, we show that the effective massaccommodation coefficient remains similar to the surface accommodationcoefficient in the case of low-volatility compounds, whereas it can decrease byseveral orders of magnitude in the case of semi-volatile compounds. Such effectscan explain apparent inconsistencies between earlier studies deriving massaccommodation coefficients from experimental data or from molecular dynamicssimulations. Our findings challenge the approach of traditional SOA models using theFuchs–Sutugin approximation of mass transfer kinetics with a fixed massaccommodation coefficient, regardless of particle phase state and penetrationdepth. The effective mass accommodation coefficient introduced in this studyprovides an efficient new way of accounting for the influence of volatility,diffusivity, and particle-phase reactions on SOA partitioning in processmodels as well as in regional and global air quality models. While kineticlimitations may not be critical for partitioning into liquid SOA particlesin the planetary boundary layer (PBL), the effects are likely important foramorphous semi-solid or glassy SOA in the free and upper troposphere (FT–UT)as well as in the PBL at low relative humidity and low temperature. 
    more » « less
  4. null (Ed.)
    Abstract. Atmospheric aerosols are a significant public health hazard and havesubstantial impacts on the climate. Secondary organic aerosols (SOAs) havebeen shown to phase separate into a highly viscous organic outer layersurrounding an aqueous core. This phase separation can decrease thepartitioning of semi-volatile and low-volatile species to the organic phaseand alter the extent of acid-catalyzed reactions in the aqueous core. A newalgorithm that can determine SOA phase separation based on their glasstransition temperature (Tg), oxygen to carbon (O:C) ratio and organic massto sulfate ratio, and meteorological conditions was implemented into theCommunity Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 andwas used to simulate the conditions in the continental United States for thesummer of 2013. SOA formed at the ground/surface level was predicted to bephase separated with core–shell morphology, i.e., aqueous inorganic coresurrounded by organic coating 65.4 % of the time during the 2013 SouthernOxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeasternUnited States. Our estimate is in proximity to the previously reported∼70 % in literature. The phase states of organic coatingsswitched between semi-solid and liquid states, depending on theenvironmental conditions. The semi-solid shell occurring with lower aerosolliquid water content (western United States and at higher altitudes) has aviscosity that was predicted to be 102–1012 Pa s, whichresulted in organic mass being decreased due to diffusion limitation.Organic aerosol was primarily liquid where aerosol liquid water was dominant(eastern United States and at the surface), with a viscosity <102 Pa s.Phase separation while in a liquid phase state, i.e.,liquid–liquid phase separation (LLPS), also reduces reactive uptake ratesrelative to homogeneous internally mixed liquid morphology but was lowerthan aerosols with a thick viscous organic shell. The sensitivity casesperformed with different phase-separation parameterization and dissolutionrate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can havevarying impact on fine particulate matter (PM2.5) organic mass, interms of bias and error compared to field data collected during the 2013 SOAS.This highlights the need to better constrain the parameters thatgovern phase state and morphology of SOA, as well as expand mechanisticrepresentation of multiphase chemistry for non-IEPOX SOA formation in modelsaided by novel experimental insights. 
    more » « less
  5. The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2–100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5) or ozonolysis of β-pinene, oligomerization rate constants on the order of 10−3 to 10−1 M−1 s−1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase. 
    more » « less