ABSTRACT Compared with our extensive understanding of the cell cycle, we have limited knowledge of how the cell quiescence–proliferation decision is regulated. Using a zebrafish epithelial model, we report a novel signaling mechanism governing the cell quiescence–proliferation decision. Zebrafish Ca2+-transporting epithelial cells, or ionocytes, maintain high cytoplasmic Ca2+ concentration ([Ca2+]c) due to the expression of Trpv6. Genetic deletion or pharmacological inhibition of Trpv6, or reduction of external Ca2+ concentration, lowered the [Ca2+]c and reactivated these cells. The ionocyte reactivation was attenuated by chelating intracellular Ca2+ and inhibiting calmodulin (CaM), suggesting involvement of a Ca2+ and CaM-dependent mechanism. Long-term imaging studies showed that after an initial decrease, [Ca2+]c gradually returned to the basal levels. There was a concomitant decease in endoplasmic reticulum (ER) Ca2+ levels. Lowering the ER Ca2+ store content or inhibiting ryanodine receptors impaired ionocyte reactivation. Further analyses suggest that CaM-dependent protein kinase kinase (CaMKK) is a key molecular link between Ca2+ and Akt signaling. Genetic deletion or inhibition of CaMKK abolished cell reactivation, which could be rescued by expression of a constitutively active Akt. These results suggest that the quiescence–proliferation decision in zebrafish ionocytes is regulated by Trpv6-mediated Ca2+ and CaMKK–Akt signaling. 
                        more » 
                        « less   
                    
                            
                            ROS signaling–induced mitochondrial Sgk1 expression regulates epithelial cell renewal
                        
                    
    
            Many types of differentiated cells can reenter the cell cycle upon injury or stress. The underlying mechanisms are still poorly understood. Here, we investigated how quiescent cells are reactivated using a zebrafish model, in which a population of differentiated epithelial cells are reactivated under a physiological context. A robust and sustained increase in mitochondrial membrane potential was observed in the reactivated cells. Genetic and pharmacological perturbations show that elevated mitochondrial metabolism and ATP synthesis are critical for cell reactivation. Further analyses showed that elevated mitochondrial metabolism increases mitochondrial ROS levels, which induces Sgk1 expression in the mitochondria. Genetic deletion and inhibition of Sgk1 in zebrafish abolished epithelial cell reactivation. Similarly, ROS-dependent mitochondrial expression of SGK1 promotes S phase entry in human breast cancer cells. Mechanistically, SGK1 coordinates mitochondrial activity with ATP synthesis by phosphorylating F 1 F o -ATP synthase. These findings suggest a conserved intramitochondrial signaling loop regulating epithelial cell renewal. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1755268
- PAR ID:
- 10437057
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 24
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Epithelial homeostasis and regeneration require a pool of quiescent cells. How the quiescent cells are established and maintained is poorly understood. Here, we report that Trpv6, a cation channel responsible for epithelial Ca2+ absorption, functions as a key regulator of cellular quiescence. Genetic deletion and pharmacological blockade of Trpv6 promoted zebrafish epithelial cells to exit from quiescence and re-enter the cell cycle. Reintroducing Trpv6, but not its channel dead mutant, restored the quiescent state. Ca2+ imaging showed that Trpv6 is constitutively open in vivo. Mechanistically, Trpv6-mediated Ca2+ influx maintained the quiescent state by suppressing insulin-like growth factor (IGF)-mediated Akt-Tor and Erk signaling. In zebrafish epithelia and human colon carcinoma cells, Trpv6/TRPV6 elevated intracellular Ca2+ levels and activated PP2A, which down-regulated IGF signaling and promoted the quiescent state. Our findings suggest that Trpv6 mediates constitutive Ca2+ influx into epithelial cells to continuously suppress growth factor signaling and maintain the quiescent state.more » « less
- 
            Mitochondrial damage occurs in human trabecular meshwork (HTM) cells as a result of normal aging and in open angle glaucoma. Using an HTM cell model, we quantified mitochondrial function and ATP generation rates after dexamethasone (Dex) and TGF-β2 treatments, frequently used as in vitro models of glaucoma. Primary HTM cells were assayed for metabolic function using a Seahorse XFp Analyzer. We additionally assessed the mitochondrial copy number and the expression of transcripts associated with mitochondrial biogenesis and oxidative stress regulation. Cells treated with Dex, but not TGF-β2, exhibited a significant decrease in total ATP production and ATP from oxidative phosphorylation relative to that of the control. Dex treatment also resulted in significant decreases in maximal respiration, ATP-linked O2 consumption, and non-mitochondrial O2 consumption. We did not observe significant changes in the level of mitochondrial genomes or mRNA transcripts of genes involved in mitochondrial biogenesis and oxidative stress regulation. Decreased mitochondrial performance and ATP production are consistent with the results of prior studies identifying the effects of Dex on multiple cell types, including HTM cells. Our results are also consistent with in vivo evidence of mitochondrial damage in open-angle glaucoma. Overall, these results demonstrate a decrease in mitochondrial performance in Dex-induced glaucomatous models in vitro, meriting further investigation.more » « less
- 
            Oxidative metabolism meets the majority of vertebrate energy demands through the coupling of mitochondrial respiration to ATP production (OXPHOS). In endotherms, variations in OXPHOS coupling efficiency influence metabolic thermogenesis, locomotor economy and reactive oxygen species (ROS) generation. However, the extent of these variations and their functional implications in ectotherms are less clear. We measured mitochondrial oxygen consumption, ATP production and ROS production in permeabilized skeletal muscle fibres from salamanders, frogs and lizards representing ectotherm clades with low, medium and high standard metabolic rates (SMRs), respectively. Consistent with predicted associations with SMR, lizards had the highest capacities for muscle mitochondrial ATP production, while salamanders had the lowest. Unexpectedly, corresponding rates of oxygen consumption followed an opposite trend, reflecting 8.5-fold variations in OXPHOS coupling efficiency between salamanders (the lowest) and lizards (the highest). Intrinsic proton permeability of the inner mitochondrial membrane was the primary source of OXPHOS coupling variation across species, being highest in salamanders and lowest in lizards. Basal proton leak mediated by uncoupling proteins and the adenine nucleotide translocase was only seen in lizards, where it limits mitochondrial ROS production. We infer that diverse evolutionary selection pressures drive unexpectedly wide variations in muscle OXPHOS efficiency with different functional implications across ectotherm clades.more » « less
- 
            Abstract Mitochondria play important roles in ovarian follicle development. Mitochondrial dysfunction, including mitochondrial gene deficiency, impairs ovarian development. Here, we explored the role and mechanism of mitochondrial inner membrane gene Immp2l in ovarian follicle growth and development. Our results revealed that female Immp2l-/- mice were infertile, whereas Immp2l+/- mice were normal. Body and ovarian weights were reduced in the female Immp2l-/- mice, ovarian follicle growth and development were stunted in the secondary follicle stage. Although a few ovarian follicles were ovulated, the oocytes were not fertilized because of mitochondrial dysfunction. Increased oxidative stress, decreased estrogen levels, and altered genes expression of Wnt/β-catenin and steroid hormone synthesis pathways were observed in 28-day-old Immp2l-/- mice. The Immp2l mutation accelerated ovarian aging process, as no ovarian follicles were detected by age 5 months in Immp2l-/- mice. All the aforementioned changes in the Immp2l-/- mice were reversed by administration of antioxidant melatonin to the Immp2l-/- mice. Furthermore, our in vitro study using Immp2l knockdown granulosa cells confirmed that the Immp2l downregulation induced granulosa cell aging by enhancing reactive oxygen species (ROS) levels, suppressing Wnt16, increasing β-catenin, and decreasing steroid hormone synthesis gene cyp19a1 and estrogen levels, accompanied by an increase in the aging phenotype of granulosa cells. Melatonin treatment delayed granulosa cell aging progression. Taken together, Immp2l causes ovarian aging through the ROS-Wnt/β-catenin-estrogen (cyp19a1) pathway, which can be reversed by melatonin treatment.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    