skip to main content


Title: Gait Differences in the Real World and Virtual Reality: The Effect of Prior Virtual Reality Experience
Walking through immersive virtual environments is one of the important parts of Virtual Reality (VR) applications. Prior research has established that users’ gait in virtual and real environments differs; however, little research has evaluated how users’ gait differs as users gain more experience with VR. We conducted experiments measuring novice and experienced subjects’ gait parameters in VR and real environments. Results showed that subjects’ performance in VR and Real World was more similar in the last trials than in the first trials; their walking dissimilarity in the start trials diminished by walking more trials. We found trial as a significant variable affecting the walking speed, step length, and trunk angle for both groups of users. While the main effect of expertise was not observed, an interaction effect between expertise and the trial number was shown. Trunk angle increased over time for novices but decreased for experts.  more » « less
Award ID(s):
2007435
NSF-PAR ID:
10437073
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Virtual Reality and 3D User Interfaces (IEEE VR) 2022
Page Range / eLocation ID:
631 to 636
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present results from an exploratory study to investigate users’ behaviors and preferences for three different styles of search results presentation in a virtual reality (VR) head-mounted display (HMD). Prior work in 2D displays has suggested possible benefits of presenting information in ways that exploit users’ spatial cognition abilities. We designed a VR system that displays search results in three different spatial arrangements: a list of 8 results, a 4x5 grid, and a 2x10 arc. These spatial display conditions were designed to differ in terms of the number of results displayed per page (8 vs 20) and the amount of head movement required to scan the results (list < grid < arc). Thirty-six participants completed 6 search trials in each display condition (18 total). For each trial, the participant was presented with a display of search results and asked to find a given target result or to indicate that the target was not present. We collected data about users’ behaviors with and perceptions about the three display conditions using interaction data, questionnaires, and interviews. We explore the effects of display condition and target presence on behavioral measures (e.g., completion time, head movement, paging events, accuracy) and on users’ perceptions (e.g., workload, ease of use, comfort, confidence, difficulty, and lostness). Our results suggest that there was no difference in accuracy among the display conditions, but that users completed tasks more quickly using the arc. However, users also expressed lower preferences for the arc, instead preferring the list and grid displays. Our findings extend prior research on visual search into to the area of 3-dimensional result displays for interactive information retrieval in VR HMD environments. 
    more » « less
  2. null (Ed.)
    Virtual reality (VR) offers the potential to study brain function in complex, ecologically realistic environments. However, the additional degrees of freedom make analysis more challenging, particularly with respect to evoked neural responses. In this paper we designed a target detection task in VR where we varied the visual angle of targets as subjects moved through a three dimensional maze. We investigated how the latency and shape of the classic P300 evoked response varied as a function of locking the electroencephalogram data to the target image onset, the target-saccade intersection, and the first fixation on the target. We found, as expected, a systematic shift in the timing of the evoked responses as a function of the type of response locking, as well as a difference in the shape of the waveforms. Interestingly, single-trial analysis showed that the peak discriminability of the evoked responses does not differ between image locked and saccade locked analysis, though it decreases significantly when fixation locked. These results suggest that there is a spread in the perception of visual information in VR environments across time and visual space. Our results point to the importance of considering how information may be perceived in naturalistic environments, specifically those that have more complexity and higher degrees of freedom than in traditional laboratory paradigms. 
    more » « less
  3. As applications for virtual reality (VR) and augmented reality (AR) technology increase, it will be important to understand how users perceive their action capabilities in virtual environments. Feedback about actions may help to calibrate perception for action opportunities (affordances) so that action judgments in VR and AR mirror actors’ real abilities. Previous work indicates that walking through a virtual doorway while wielding an object can calibrate the perception of one’s passability through feedback from collisions. In the current study, we aimed to replicate this calibration through feedback using a different paradigm in VR while also testing whether this calibration transfers to AR. Participants held a pole at 45°and made passability judgments in AR (pretest phase). Then, they made passability judgments in VR and received feedback on those judgments by walking through a virtual doorway while holding the pole (calibration phase). Participants then returned to AR to make posttest passability judgments. Results indicate that feedback calibrated participants’ judgments in VR. Moreover, this calibration transferred to the AR environment. In other words, after experiencing feedback in VR, passability judgments in VR and in AR became closer to an actor’s actual ability, which could make training applications in these technologies more effective.

     
    more » « less
  4. Previous research has shown that individuals behave differently in certain virtual reality tasks. The effect of VR on human posture and stability is an important factor that can influence the future applications of VR devices. This current study seeks to investigate how a person’s postural stability differs between VR and normal environment while attempting to replicate the influence of target distance on sway. Ten healthy subjects were tested in both environments with targets varying in distance. The results found a significant difference in postural stability for normal anatomical stance tasks between VR and normal environments. 
    more » « less
  5. We investigated how novices’ perception of exoskeleton usefulness changes with different types of exposure to an exoskeleton; and when the biomechanical benefits and limitations of potential exoskeleton use are presented to them. Twenty young, healthy participants completed this study. The three types of informational exposures to a back-support exoskeleton (BSE) were: (1) Information-based, (2) Virtual Reality (VR)-based, and (3) hands-on experience (lifting a box using the BSE), where users virtually and physically completed various lifting/lowering tasks set at shoulder, waist, and ankle heights in symmetric and asymmetric positions. After every trial in each exposure, perceived usefulness was obtained. Overall, perceived usefulness ratings generally varied with major task variables (load, lift height, and trunk angle). The VR-based exposure appeared to clarify the specific circumstances under which the BSE was perceived to be useful and reduced extreme biases (positive or negative) that individuals may have developed prior to trying on a BSE.

     
    more » « less