skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dry etching in the presence of physisorption of neutrals at lower temperatures
In this article, we give an overview about the chemical and physical processes that play a role in etching at lower wafer temperatures. Conventionally, plasma etching processes rely on the formation of radicals, which readily chemisorb at the surface. Molecules adsorb via physisorption at low temperatures, but they lack enough energy to overcome the energy barrier for a chemical reaction. The density of radicals in a typical plasma used in semiconductor manufacturing is one to two orders of magnitude lower than the concentration of the neutrals. Physisorption of neutrals at low temperatures, therefore, increases the neutral concentration on the surface meaningfully and contributes to etching if they are chemically activated. The transport of neutrals in high aspect ratio features is enhanced at low temperatures because physisorbed species are mobile. The temperature window of low temperature etching is bracketed at the low end by condensation including capillary effects and diminished physisorption at the high end. The useful temperature window is chemistry dependent. Besides illuminating the fundamental effects, which make low temperature processing unique, this article illustrates its utility for semiconductor etching applications.  more » « less
Award ID(s):
1805112
PAR ID:
10437210
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
41
Issue:
2
ISSN:
0734-2101
Page Range / eLocation ID:
023005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the isotropic plasma atomic layer etching (ALE) of aluminum nitride using sequential exposures of SF6 plasma and trimethylaluminum [Al(CH3)3]. ALE was observed at temperatures greater than 200 °C, with a maximum etch rate of 1.9 Å/cycle observed at 300 °C as measured using ex situ ellipsometry. After ALE, the etched surface was found to contain a lower concentration of oxygen compared to the original surface and exhibited a ∼35% decrease in surface roughness. These findings have relevance for applications of AlN in nonlinear photonics and wide bandgap semiconductor devices. 
    more » « less
  2. Low-temperature plasmas (LTPs) are essential to manufacturing devices in the semiconductor industry, from creating extreme ultraviolet photons used in the most advanced lithography to thin film etching, deposition, and surface modifications. It is estimated that 40%–45% of all process steps needed to manufacture semiconductor devices use LTPs in one form or another. LTPs have been an enabling technology in the multidecade progression of the shrinking of device dimensions, often referred to as Moore’s law. New challenges in circuit and device design, novel materials, and increasing demands to achieve environmentally benign processing technologies require advances in plasma technology beyond the current state-of-the-art. The Department of Energy Office of Science Fusion Energy Sciences held a workshop titled Plasma Science for Microelectronics Nanofabrication in August 2022 to discuss the plasma science challenges and technical barriers that need to be overcome to continue to develop the innovative plasma technologies required to support and advance the semiconductor industry. One of the key outcomes of the workshop was identifying a set of priority research opportunities (PROs) to focus attention on the most strategic plasma science challenges to address to benefit the semiconductor industry. For each PRO, scientific challenges and recommended strategies to address those challenges were identified. This article summarizes the PROs identified by the workshop participants. 
    more » « less
  3. The etching of ZnO thin films using acetylacetone (Hacac) doses with long exposure times, followed by purging and subsequent exposure to O2 plasma, is studied in a hot-wall reactor using simultaneous in situ spectroscopic ellipsometry and quadrupole mass spectrometry. The static exposure step results in the efficient consumption of Hacac. For each etch cycle, the O2 plasma plays a crucial role in removing unreacted Hacac from the ZnO surface, priming the surface for subsequent Hacac etching. This is confirmed by the production of CO2 during the O2 plasma pulse. The temperature window for etching is established as 220–280 °C with a maximum etch per cycle (EPC) of 0.15 nm/cy. Under these conditions, the Hacac pulse is 2 s long with a 30 s static hold step followed by 5 s O2 plasma step at 300 W power. Statistical analyses of etch data at the granularity level of each cycle reveal the importance of the static hold step in determining EPC. Arrhenius behavior of etching during the hold step reveals a piecewise linear trend with a low temperature (120–200 °C) activation energy (Ea) of 202 meV and a high temperature (200–320 °C) Ea of 32 meV. It is shown that saturation behavior in EPC is pulse time and static hold time dependent. Shorter Hacac pulses (≤1 s) demonstrate saturation behavior for static hold times ∼30 s, longer pulses of Hacac (≥2 s) show no saturation in EPC with static hold times up to 75 s. 
    more » « less
  4. Plasma etching is an essential semiconductor manufacturing technology required to enable the current microelectronics industry. Along with lithographic patterning, thin-film formation methods, and others, plasma etching has dynamically evolved to meet the exponentially growing demands of the microelectronics industry that enables modern society. At this time, plasma etching faces a period of unprecedented changes owing to numerous factors, including aggressive transition to three-dimensional (3D) device architectures, process precision approaching atomic-scale critical dimensions, introduction of new materials, fundamental silicon device limits, and parallel evolution of post-CMOS approaches. The vast growth of the microelectronics industry has emphasized its role in addressing major societal challenges, including questions on the sustainability of the associated energy use, semiconductor manufacturing related emissions of greenhouse gases, and others. The goal of this article is to help both define the challenges for plasma etching and point out effective plasma etching technology options that may play essential roles in defining microelectronics manufacturing in the future. The challenges are accompanied by significant new opportunities, including integrating experiments with various computational approaches such as machine learning/artificial intelligence and progress in computational approaches, including the realization of digital twins of physical etch chambers through hybrid/coupled models. These prospects can enable innovative solutions to problems that were not available during the past 50 years of plasma etch development in the microelectronics industry. To elaborate on these perspectives, the present article brings together the views of various experts on the different topics that will shape plasma etching for microelectronics manufacturing of the future. 
    more » « less
  5. Electronegative inductively coupled plasmas (ICPs) are used for conductor etching in the microelectronics industry for semiconductor fabrication. Pulsing of the antenna power and bias voltages provides additional control for optimizing plasma–surface interactions. However, pulsed ICPs are susceptible to capacitive-to-inductive mode transitions at the onset of the power pulse due to there being low electron densities at the end of the prior afterglow. The capacitive (E) to inductive (H) mode transition is sensitive to the spatial configuration of the plasma at the end of the prior afterglow, circuit (matchbox) settings, operating conditions, and reactor configurations, including antenna geometry. In this paper, we discuss results from a computational investigation of E–H transitions in pulsed ICPs sustained in Ar/Cl2 and Ar/O2 gas mixtures while varying operating conditions, including gas mixture, pulse repetition frequency, duty cycle of the power pulse, and antenna geometry. Pulsed ICPs sustained in Ar/Cl2 mixtures are prone to significant E–H transitions due to thermal dissociative attachment reactions with Cl2 during the afterglow which reduce pre-pulse electron densities. These abrupt E–H transitions launch electrostatic waves from the formation of a sheath at the boundaries of the plasma and under the antenna in particular. The smoother E–H transitions observed for Ar/O2 mixture results from the higher electron density at the start of the power pulse due to the lack of thermal electron attaching reactions to O2. Ion energy and angular distributions (IEADs) incident onto the wafer and the dielectric window under the antenna are discussed. The shape of the antenna influences the severity of the E–H transition and the IEADs, with antennas having larger surface areas facing the plasma producing larger capacitive coupling. Validation of the model is performed by comparison of computed electron densities with experimental measurements. 
    more » « less