skip to main content


This content will become publicly available on July 1, 2025

Title: Science challenges and research opportunities for plasma applications in microelectronics

Low-temperature plasmas (LTPs) are essential to manufacturing devices in the semiconductor industry, from creating extreme ultraviolet photons used in the most advanced lithography to thin film etching, deposition, and surface modifications. It is estimated that 40%–45% of all process steps needed to manufacture semiconductor devices use LTPs in one form or another. LTPs have been an enabling technology in the multidecade progression of the shrinking of device dimensions, often referred to as Moore’s law. New challenges in circuit and device design, novel materials, and increasing demands to achieve environmentally benign processing technologies require advances in plasma technology beyond the current state-of-the-art. The Department of Energy Office of Science Fusion Energy Sciences held a workshop titled Plasma Science for Microelectronics Nanofabrication in August 2022 to discuss the plasma science challenges and technical barriers that need to be overcome to continue to develop the innovative plasma technologies required to support and advance the semiconductor industry. One of the key outcomes of the workshop was identifying a set of priority research opportunities (PROs) to focus attention on the most strategic plasma science challenges to address to benefit the semiconductor industry. For each PRO, scientific challenges and recommended strategies to address those challenges were identified. This article summarizes the PROs identified by the workshop participants.

 
more » « less
Award ID(s):
2009219
PAR ID:
10527925
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Vacuum Science & Technology B
Volume:
42
Issue:
4
ISSN:
2166-2746
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plasma etching is an essential semiconductor manufacturing technology required to enable the current microelectronics industry. Along with lithographic patterning, thin-film formation methods, and others, plasma etching has dynamically evolved to meet the exponentially growing demands of the microelectronics industry that enables modern society. At this time, plasma etching faces a period of unprecedented changes owing to numerous factors, including aggressive transition to three-dimensional (3D) device architectures, process precision approaching atomic-scale critical dimensions, introduction of new materials, fundamental silicon device limits, and parallel evolution of post-CMOS approaches. The vast growth of the microelectronics industry has emphasized its role in addressing major societal challenges, including questions on the sustainability of the associated energy use, semiconductor manufacturing related emissions of greenhouse gases, and others. The goal of this article is to help both define the challenges for plasma etching and point out effective plasma etching technology options that may play essential roles in defining microelectronics manufacturing in the future. The challenges are accompanied by significant new opportunities, including integrating experiments with various computational approaches such as machine learning/artificial intelligence and progress in computational approaches, including the realization of digital twins of physical etch chambers through hybrid/coupled models. These prospects can enable innovative solutions to problems that were not available during the past 50 years of plasma etch development in the microelectronics industry. To elaborate on these perspectives, the present article brings together the views of various experts on the different topics that will shape plasma etching for microelectronics manufacturing of the future.

     
    more » « less
  2. Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. In this paper, we will discuss the challenges being faced in the field of LTPs, in particular for atmospheric pressure plasmas, with a focus on health, energy and sustainability. 
    more » « less
  3. Abstract

    A workshop on Challenges in Representing Manufacturing Processes for Systematic Sustainability Assessments, jointly sponsored by the U.S. National Science Foundation, the U.S. National Institute of Standards and Technology, ASTM International, the American Society of Mechanical Engineers, and the Society of Manufacturing Engineers, was held in College Station, Texas on June 21, 2018. The goals of the workshop were to identify research needs supporting manufacturing process characterization, define limitations in associated education practices, and emphasize on challenges to be pursued by the advanced manufacturing research community. An important aspect surrounded the introduction and development of reusable abstractions of manufacturing processes (RAMP), which are standard representations of unit manufacturing processes to support the development of metrics, methods, and tools for the analysis of manufacturing processes and systems. This paper reports on the workshop activities and findings, which span the improvement of engineering education, the understanding of process physics and the influence of novel materials and manufacturing processes on energy and environmental impacts, and approaches for optimization and decision-making in the design of manufacturing systems. A nominal group technique was used to identify metrics, methods, and tools critical to advanced manufacturing industry as well as highlight the associated research challenges and barriers. Workshop outcomes provide a number of research directions that can be pursued to address the identified challenges and barriers.

     
    more » « less
  4. Abstract

    Data‐driven science and technology have helped achieve meaningful technological advancements in areas such as materials/drug discovery and health care, but efforts to apply high‐end data science algorithms to the areas of glass and ceramics are still limited. Many glass and ceramic researchers are interested in enhancing their work by using more data and data analytics to develop better functional materials more efficiently. Simultaneously, the data science community is looking for a way to access materials data resources to test and validate their advanced computational learning algorithms. To address this issue, The American Ceramic Society (ACerS) convened a Glass and Ceramic Data Science Workshop in February 2018, sponsored by the National Institute for Standards and Technology (NIST) Advanced Manufacturing Technologies (AMTech) program. The workshop brought together a select group of leaders in the data science, informatics, and glass and ceramics communities, ACerS, and Nexight Group to identify the greatest opportunities and mechanisms for facilitating increased collaboration and coordination between these communities. This article summarizes workshop discussions about the current challenges that limit interactions and collaboration between the glass and ceramic and data science communities, opportunities for a coordinated approach that leverages existing knowledge in both communities, and a clear path toward the enhanced use of data science technologies for functional glass and ceramic research and development.

     
    more » « less
  5. Abstract

    Power semiconductor devices are fundamental drivers for advances in power electronics, the technology for electric energy conversion. Power devices based on wide-bandgap (WBG) and ultra-wide bandgap (UWBG) semiconductors allow for a smaller chip size, lower loss and higher frequency compared with their silicon (Si) counterparts, thus enabling a higher system efficiency and smaller form factor. Amongst the challenges for the development and deployment of WBG and UWBG devices is the efficient dissipation of heat, an unavoidable by-product of the higher power density. To mitigate the performance limitations and reliability issues caused by self-heating, thermal management is required at both device and package levels. Packaging in particular is a crucial milestone for the development of any power device technology; WBG and UWBG devices have both reached this milestone recently. This paper provides a timely review of the thermal management of WBG and UWBG power devices with an emphasis on packaged devices. Additionally, emerging UWBG devices hold good promise for high-temperature applications due to their low intrinsic carrier density and increased dopant ionization at elevated temperatures. The fulfillment of this promise in system applications, in conjunction with overcoming the thermal limitations of some UWBG materials, requires new thermal management and packaging technologies. To this end, we provide perspectives on the relevant challenges, potential solutions and research opportunities, highlighting the pressing needs for device–package electrothermal co-design and high-temperature packages that can withstand the high electric fields expected in UWBG devices.

     
    more » « less