skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Composing games into complex institutions
Game theory is used by all behavioral sciences, but its development has long centered around the economic interpretation of equilibrium outcomes in relatively simple games and toy systems. But game theory has another potential use: the high-level design of large game compositions that express complex architectures and represent real-world institutions faithfully. Compositional game theory, grounded in the mathematics underlying programming languages, and introduced here as a general computational framework, increases the parsimony of game representations with abstraction and modularity, accelerates search and design, and helps theorists across disciplines express real-world institutional complexity in well-defined ways. Relative to existing approaches in game theory, compositional game theory is especially promising for solving game systems with long-range dependencies, for comparing large numbers of structurally related games, and for nesting games into the larger logical or strategic flows typical of real world policy or institutional systems.  more » « less
Award ID(s):
1917908
PAR ID:
10437275
Author(s) / Creator(s):
; ; ;
Editor(s):
Edwards, Peter
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
3
ISSN:
1932-6203
Page Range / eLocation ID:
e0283361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jeronen, Eila; Gordon, Neil; Reichgelt, Han (Ed.)
    The use of educational digital games as supplemental tools to course instruction materials has increased over the last several decades and especially since the COVID-19 pandemic. Though these types of instructional games have been employed in the majority of STEM disciplines, less is known about how diverse populations of students interpret and define the value of these games towards achieving academic and professional pursuits. A mixed-method sequential exploratory research design method that was framed on the Technology Acceptance Model, Game-Based Learning Theory and Expectancy Value Theory was used to examine how 201 students perceived the usefulness of an intuitive education game that was designed to teach engineering mechanics used in designing civil structures. We found that students had different expectations of educational digital games than games designed for entertainment used outside of classroom environments. Several students thought that the ability to design their own structures and observe structure failure in real-time was a valuable asset in understanding how truss structures responded to physical loading conditions. However, few students thought the educational game would be useful for exam (14/26) or job interview (19/26) preparation. Students associated more value with engineering games that illustrate course content and mathematical calculations used in STEM courses than those that do not include these elements. 
    more » « less
  2. In this paper, we investigate Nash-regret minimization in congestion games, a class of games with benign theoretical structure and broad real-world applications. We first propose a centralized algorithm based on the optimism in the face of uncertainty principle for congestion games with (semi-)bandit feedback, and obtain finite-sample guarantees. Then we propose a decentralized algorithm via a novel combination of the Frank-Wolfe method and G-optimal design. By exploiting the structure of the congestion game, we show the sample complexity of both algorithms depends only polynomially on the number of players and the number of facilities, but not the size of the action set, which can be exponentially large in terms of the number of facilities. We further define a new problem class, Markov congestion games, which allows us to model the non-stationarity in congestion games. We propose a centralized algorithm for Markov congestion games, whose sample complexity again has only polynomial dependence on all relevant problem parameters, but not the size of the action set. 
    more » « less
  3. Abstract Schmidt’s game and other similar intersection games have played an important role in recent years in applications to number theory, dynamics, and Diophantine approximation theory. These games are real games, that is, games in which the players make moves from a complete separable metric space. The determinacy of these games trivially follows from the axiom of determinacy for real games, $$\mathsf {AD}_{\mathbb R}$$ , which is a much stronger axiom than that asserting all integer games are determined, $$\mathsf {AD}$$ . One of our main results is a general theorem which under the hypothesis $$\mathsf {AD}$$ implies the determinacy of intersection games which have a property allowing strategies to be simplified. In particular, we show that Schmidt’s $$(\alpha ,\beta ,\rho )$$ game on $$\mathbb R$$ is determined from $$\mathsf {AD}$$ alone, but on $$\mathbb R^n$$ for $$n \geq 3$$ we show that $$\mathsf {AD}$$ does not imply the determinacy of this game. We then give an application of simple strategies and prove that the winning player in Schmidt’s $$(\alpha , \beta , \rho )$$ game on $$\mathbb {R}$$ has a winning positional strategy, without appealing to the axiom of choice. We also prove several other results specifically related to the determinacy of Schmidt’s game. These results highlight the obstacles in obtaining the determinacy of Schmidt’s game from $$\mathsf {AD}$$ . 
    more » « less
  4. Feng, Minyu (Ed.)
    Engineering systems, characterized by their high technical complexity and societal intricacies, require a strategic design approach to navigate multifaceted challenges. Understanding the circumstances that affect strategic action in these systems is crucial for managing complex real-world challenges. These challenges go beyond localized coordination issues and encompass intricate dynamics, requiring a deep understanding of the underlying structures impacting strategic behaviors, the interactions between subsystems, and the conflicting needs and expectations of diverse actors. Traditional optimization and game-theoretic approaches to guide individual and collective decisions need adaptation to capture the complexities of these design ecosystems, particularly in the face of increasing numbers of decision-makers and various interconnections between them. This paper presents a framework for studying strategic decision-making processes in collective systems. It tackles the combinatorial complexity and interdependencies inherent in large-scale systems by representing strategic decision-making processes as binary normal-form games, then dissects and reinterprets them in terms of multiple compact games characterized by two real-numbered structural factors and classifies them across four strategy dynamical domains associated with different stability conditions. We provide a mathematical characterization and visual representation of emergent strategy dynamics in games with three or more actors intended to facilitate its implementation by researchers and practitioners and elicit new perspectives on design and management for optimizing systems-of-systems performance. We conclude this paper with a discussion of the opportunities and challenges of adopting this framework within and beyond the context of engineering systems. 
    more » « less
  5. null (Ed.)
    Motivated by real-world deployment of drones for conservation, this paper advances the state-of-the-art in security games with signaling. The well-known defender-attacker security games framework can help in planning for such strategic deployments of sensors and human patrollers, and warning signals to ward off adversaries. However, we show that defenders can suffer significant losses when ignoring real-world uncertainties despite carefully planned security game strategies with signaling. In fact, defenders may perform worse than forgoing drones completely in this case. We address this shortcoming by proposing a novel game model that integrates signaling and sensor uncertainty; perhaps surprisingly, we show that defenders can still perform well via a signaling strategy that exploits uncertain real-time information. For example, even in the presence of uncertainty, the defender still has an informational advantage in knowing that she has or has not actually detected the attacker; and she can design a signaling scheme to “mislead” the attacker who is uncertain as to whether he has been detected. We provide theoretical results, a novel algorithm, scale-up techniques, and experimental results from simulation based on our ongoing deployment of a conservation drone system in South Africa. 
    more » « less