skip to main content


Title: DETERMINACY OF SCHMIDT’S GAME AND OTHER INTERSECTION GAMES
Abstract Schmidt’s game and other similar intersection games have played an important role in recent years in applications to number theory, dynamics, and Diophantine approximation theory. These games are real games, that is, games in which the players make moves from a complete separable metric space. The determinacy of these games trivially follows from the axiom of determinacy for real games, $\mathsf {AD}_{\mathbb R}$ , which is a much stronger axiom than that asserting all integer games are determined, $\mathsf {AD}$ . One of our main results is a general theorem which under the hypothesis $\mathsf {AD}$ implies the determinacy of intersection games which have a property allowing strategies to be simplified. In particular, we show that Schmidt’s $(\alpha ,\beta ,\rho )$ game on $\mathbb R$ is determined from $\mathsf {AD}$ alone, but on $\mathbb R^n$ for $n \geq 3$ we show that $\mathsf {AD}$ does not imply the determinacy of this game. We then give an application of simple strategies and prove that the winning player in Schmidt’s $(\alpha , \beta , \rho )$ game on $\mathbb {R}$ has a winning positional strategy, without appealing to the axiom of choice. We also prove several other results specifically related to the determinacy of Schmidt’s game. These results highlight the obstacles in obtaining the determinacy of Schmidt’s game from $\mathsf {AD}$ .  more » « less
Award ID(s):
1800323
NSF-PAR ID:
10464196
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Symbolic Logic
Volume:
88
Issue:
1
ISSN:
0022-4812
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals.

    The following summarizes the main results proved under suitable partition hypotheses.

    If$\kappa $is a cardinal,$\epsilon < \kappa $,${\mathrm {cof}}(\epsilon ) = \omega $,$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$and$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$, then$\Phi $satisfies the almost everywhere short length continuity property: There is a club$C \subseteq \kappa $and a$\delta < \epsilon $so that for all$f,g \in [C]^\epsilon _*$, if$f \upharpoonright \delta = g \upharpoonright \delta $and$\sup (f) = \sup (g)$, then$\Phi (f) = \Phi (g)$.

    If$\kappa $is a cardinal,$\epsilon $is countable,$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$holds and$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$, then$\Phi $satisfies the strong almost everywhere short length continuity property: There is a club$C \subseteq \kappa $and finitely many ordinals$\delta _0, ..., \delta _k \leq \epsilon $so that for all$f,g \in [C]^\epsilon _*$, if for all$0 \leq i \leq k$,$\sup (f \upharpoonright \delta _i) = \sup (g \upharpoonright \delta _i)$, then$\Phi (f) = \Phi (g)$.

    If$\kappa $satisfies$\kappa \rightarrow _* (\kappa )^\kappa _2$,$\epsilon \leq \kappa $and$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$, then$\Phi $satisfies the almost everywhere monotonicity property: There is a club$C \subseteq \kappa $so that for all$f,g \in [C]^\epsilon _*$, if for all$\alpha < \epsilon $,$f(\alpha ) \leq g(\alpha )$, then$\Phi (f) \leq \Phi (g)$.

    Suppose dependent choice ($\mathsf {DC}$),${\omega _1} \rightarrow _* ({\omega _1})^{\omega _1}_2$and the almost everywhere short length club uniformization principle for${\omega _1}$hold. Then every function$\Phi : [{\omega _1}]^{\omega _1}_* \rightarrow {\omega _1}$satisfies a finite continuity property with respect to closure points: Let$\mathfrak {C}_f$be the club of$\alpha < {\omega _1}$so that$\sup (f \upharpoonright \alpha ) = \alpha $. There is a club$C \subseteq {\omega _1}$and finitely many functions$\Upsilon _0, ..., \Upsilon _{n - 1} : [C]^{\omega _1}_* \rightarrow {\omega _1}$so that for all$f \in [C]^{\omega _1}_*$, for all$g \in [C]^{\omega _1}_*$, if$\mathfrak {C}_g = \mathfrak {C}_f$and for all$i < n$,$\sup (g \upharpoonright \Upsilon _i(f)) = \sup (f \upharpoonright \Upsilon _i(f))$, then$\Phi (g) = \Phi (f)$.

    Suppose$\kappa $satisfies$\kappa \rightarrow _* (\kappa )^\epsilon _2$for all$\epsilon < \kappa $. For all$\chi < \kappa $,$[\kappa ]^{<\kappa }$does not inject into${}^\chi \mathrm {ON}$, the class of$\chi $-length sequences of ordinals, and therefore,$|[\kappa ]^\chi | < |[\kappa ]^{<\kappa }|$. As a consequence, under the axiom of determinacy$(\mathsf {AD})$, these two cardinality results hold when$\kappa $is one of the following weak or strong partition cardinals of determinacy:${\omega _1}$,$\omega _2$,$\boldsymbol {\delta }_n^1$(for all$1 \leq n < \omega $) and$\boldsymbol {\delta }^2_1$(assuming in addition$\mathsf {DC}_{\mathbb {R}}$).

     
    more » « less
  2. Abstract Using the calculus of variations, we prove the following structure theorem for noise-stable partitions: a partition of n -dimensional Euclidean space into m disjoint sets of fixed Gaussian volumes that maximise their noise stability must be $(m-1)$ -dimensional, if $m-1\leq n$ . In particular, the maximum noise stability of a partition of m sets in $\mathbb {R}^{n}$ of fixed Gaussian volumes is constant for all n satisfying $n\geq m-1$ . From this result, we obtain: (i) A proof of the plurality is stablest conjecture for three candidate elections, for all correlation parameters $\rho $ satisfying $0<\rho <\rho _{0}$ , where $\rho _{0}>0$ is a fixed constant (that does not depend on the dimension n ), when each candidate has an equal chance of winning. (ii) A variational proof of Borell’s inequality (corresponding to the case $m=2$ ). The structure theorem answers a question of De–Mossel–Neeman and of Ghazi–Kamath–Raghavendra. Item (i) is the first proof of any case of the plurality is stablest conjecture of Khot-Kindler-Mossel-O’Donnell for fixed $\rho $ , with the case $\rho \to L1^{-}$ being solved recently. Item (i) is also the first evidence for the optimality of the Frieze–Jerrum semidefinite program for solving MAX-3-CUT, assuming the unique games conjecture. Without the assumption that each candidate has an equal chance of winning in (i), the plurality is stablest conjecture is known to be false. 
    more » « less
  3. Abstract

    The free multiplicative Brownian motion$$b_{t}$$btis the large-Nlimit of the Brownian motion on$$\mathsf {GL}(N;\mathbb {C}),$$GL(N;C),in the sense of$$*$$-distributions. The natural candidate for the large-Nlimit of the empirical distribution of eigenvalues is thus the Brown measure of$$b_{t}$$bt. In previous work, the second and third authors showed that this Brown measure is supported in the closure of a region$$\Sigma _{t}$$Σtthat appeared in the work of Biane. In the present paper, we compute the Brown measure completely. It has a continuous density$$W_{t}$$Wton$$\overline{\Sigma }_{t},$$Σ¯t,which is strictly positive and real analytic on$$\Sigma _{t}$$Σt. This density has a simple form in polar coordinates:$$\begin{aligned} W_{t}(r,\theta )=\frac{1}{r^{2}}w_{t}(\theta ), \end{aligned}$$Wt(r,θ)=1r2wt(θ),where$$w_{t}$$wtis an analytic function determined by the geometry of the region$$\Sigma _{t}$$Σt. We show also that the spectral measure of free unitary Brownian motion$$u_{t}$$utis a “shadow” of the Brown measure of$$b_{t}$$bt, precisely mirroring the relationship between the circular and semicircular laws. We develop several new methods, based on stochastic differential equations and PDE, to prove these results.

     
    more » « less
  4. null (Ed.)
    We show that if V has a proper class ofWoodin cardinals, a strong cardinal, and a generically universally Baire iteration strategy (as defined in the paper) then Sealing holds after collapsing the successor of the least strong cardinal to be countable. This result is complementary to other work by the authors where it is shown that Sealing holds in a generic extension of a certain minimal universe. The current theorem is more general in that no minimality assumption is needed. A corollary of the main theorem is that Sealing is consistent relative to the existence of a Woodin cardinal which is a limit of Woodin cardinals. This improves significantly on the first consistency of Sealing obtained by W.H. Woodin. The Largest Suslin Axiom (LSA) is a determinacy axiom isolated byWoodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable bijections. Let LSA-over-uB be the statement that in all (set) generic extensions there is a model of LSA whose Suslin, co-Suslin sets are the universally Baire sets. The other main result of the paper shows that assuming V has a proper class of inaccessible cardinals which are limit of Woodin cardinals, a strong cardinal, and a generically universally Baire iteration strategy, in the universe V [g], where g is V -generic for the collapse of the successor of the least strong cardinal to be countable, the theory LSA-over-UB fails; this implies that LSA-over-UB is not equivalent to Sealing (over the base theory of V [g]). This is interesting and somewhat unexpected, in light of other work by the authors. Compare this result with Steel’s well-known theorem that “AD in L(R) holds in all generic extensions” is equivalent to “the theory of L(R) is sealed” in the presence of a proper class of measurable cardinals. 
    more » « less
  5. Abstract

    A set of reals isuniversally Baireif all of its continuous preimages in topological spaces have the Baire property.$\mathsf {Sealing}$is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory of the universally Baire sets cannot be changed by forcing.

    The$\mathsf {Largest\ Suslin\ Axiom}$($\mathsf {LSA}$) is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable bijections. Let$\mathsf {LSA-over-uB}$be the statement that in all (set) generic extensions there is a model of$\mathsf {LSA}$whose Suslin, co-Suslin sets are the universally Baire sets.

    We show that over some mild large cardinal theory,$\mathsf {Sealing}$is equiconsistent with$\mathsf {LSA-over-uB}$. In fact, we isolate an exact large cardinal theory that is equiconsistent with both (see Definition 2.7). As a consequence, we obtain that$\mathsf {Sealing}$is weaker than the theory ‘$\mathsf {ZFC} +$there is a Woodin cardinal which is a limit of Woodin cardinals’.

    A variation of$\mathsf {Sealing}$, called$\mathsf {Tower\ Sealing}$, is also shown to be equiconsistent with$\mathsf {Sealing}$over the same large cardinal theory.

    The result is proven via Woodin’s$\mathsf {Core\ Model\ Induction}$technique and is essentially the ultimate equiconsistency that can be proven via the current interpretation of$\mathsf {CMI}$as explained in the paper.

     
    more » « less