skip to main content


Title: The butterfly effect and the transition to turbulence in a stratified shear layer
In a stably stratified shear layer, multiple competing instabilities produce sensitivity to small changes in initial conditions, popularly called the butterfly effect (as a flapping wing may alter the weather). Three ensembles of 15 simulated mixing events, identical but for small perturbations to the initial state, are used to explore differences in the route to turbulence, the maximum turbulence level and the total amount and efficiency of mixing accomplished by each event. Comparisons show that a small change in the initial state alters the strength and timing of the primary Kelvin–Helmholtz instability, the subharmonic pairing instability and the various three-dimensional secondary instabilities that lead to turbulence. The effect is greatest in, but not limited to, the parameter regime where pairing and the three-dimensional secondary instabilities are in strong competition. Pairing may be accelerated or prevented; maximum turbulence kinetic energy may vary by up to a factor of 4.6, flux Richardson number by 12 %–15 % and net mixing by a factor of 2.  more » « less
Award ID(s):
1830071
NSF-PAR ID:
10437303
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
953
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Studies of Kelvin–Helmholtz (KH) instability have typically modelled the initial flow as an isolated shear layer. In geophysical cases, however, the instability often occurs near boundaries and may therefore be influenced by boundary proximity effects. Ensembles of direct numerical simulations are conducted to understand the effect of boundary proximity on the evolution of the instability and the resulting turbulence. Ensemble averages are used to reduce sensitivity to small variations in initial conditions. Both the transition to turbulence and the resulting turbulent mixing are modified when the shear layer is near a boundary: the time scales for the onset of instability and turbulence are longer, and the height of the KH billow is reduced. Subharmonic instability is suppressed by the boundary because phase lock is prevented due to the diverging phase speeds of the KH and subharmonic modes. In addition, the disruptive influence of three-dimensional secondary instabilities on pairing is more profound as the two events coincide more closely. When the shear layer is far from the boundary, the shear-aligned convective instability is dominant; however, secondary central-core instability takes over when the shear layer is close to the boundary, providing an alternate route for the transition to turbulence. Both the efficiency of the resulting mixing and the turbulent diffusivity are dramatically reduced by boundary proximity effects. 
    more » « less
  2. Stationary longitudinal vortical rolls emerge in katabatic and anabatic Prandtl slope flows at shallow slopes as a result of an instability when the imposed surface buoyancy flux relative to the background stratification is sufficiently large. Here, we identify the self-pairing of these longitudinal rolls as a unique flow structure. The topology of the counter-rotating vortex pair bears a striking resemblance to speaker-wires and their interaction with each other is a precursor to further destabilization and breakdown of the flow field into smaller structures. On its own, a speaker-wire vortex retains its unique topology without any vortex reconnection or breakup. For a fixed slope angle $\alpha =3^{\circ }$ and at a constant Prandtl number, we analyse the saturated state of speaker-wire vortices and perform a bi-global linear stability analysis based on their stationary state. We establish the existence of both fundamental and subharmonic secondary instabilities depending on the circulation and transverse wavelength of the base state of speaker-wire vortices. The dominance of subharmonic modes relative to the fundamental mode helps to explain the relative stability of a single vortex pair compared to the vortex dynamics in the presence of two or an even number of pairs. These instability modes are essential for the bending and merging of multiple speaker-wire vortices, which break up and lead to more dynamically unstable states, eventually paving the way for transition towards turbulence. This process is demonstrated via three-dimensional flow simulations with which we are able to track the nonlinear temporal evolution of these instabilities. 
    more » « less
  3. Abstract We consider the firehose instability coexisting with the omnipresent ambient solar wind turbulence. The characteristic temporal and spatial scales of the turbulence are comparable to those of the instability. Therefore, turbulence may violate the common assumption of a uniform and stationary background used to describe instabilities and make the properties of the instabilities different. To investigate this effect, we perform three-dimensional hybrid simulations with particle-in-cell ions and a quasi-neutralizing electron fluid. We find that the turbulence significantly reduces the growth rates and saturation levels of both instabilities. Comparing the cases with and without turbulence, the former results in a higher temperature anisotropy in the asymptotic marginally stable state at large times. In the former case, the distribution function averaged over the simulation box is also closer to the initial one. 
    more » « less
  4. null (Ed.)
    The strong Ising spin–orbit coupling in certain two-dimensional transition metal dichalcogenides can profoundly affect the superconducting state in few-layer samples. For example, in NbSe2, this effect combines with the reduced dimensionality to stabilize the superconducting state against magnetic fields up to ~35 T, and could lead to topological superconductivity. Here we report a two-fold rotational symmetry of the superconducting state in few-layer NbSe2 under in-plane external magnetic fields, in contrast to the three-fold symmetry of the lattice. Both the magnetoresistance and critical field exhibit this two-fold symmetry, and it also manifests deep inside the superconducting state in NbSe2/CrBr3 superconductor-magnet tunnel junctions. In both cases, the anisotropy vanishes in the normal state, demonstrating that it is an intrinsic property of the superconducting phase. We attribute the behaviour to the mixing between two closely competing pairing instabilities, namely the conventional s-wave instability typical of bulk NbSe2 and an unconventional d- or p-wave channel that emerges in few-layer NbSe2. Our results demonstrate the unconventional character of the pairing interaction in few-layer transition metal dichalcogenides and highlight the exotic superconductivity in this family of two-dimensional materials. 
    more » « less
  5. Abstract

    We develop a parameterization for representing the effects of submesoscale symmetric instability (SI) in the ocean interior. SI may contribute to water mass modification and mesoscale energy dissipation in flow systems throughout the World Ocean. Dense gravity currents forced by surface buoyancy loss over shallow shelves are a particularly compelling test case, as they are characterized by density fronts and shears susceptible to a wide range of submesoscale instabilities. We present idealized experiments of Arctic shelf overflows employing the GFDL‐MOM6 inz* and isopycnal coordinates. At the highest resolutions, the dense flow undergoes geostrophic adjustment and forms bottom‐ and surface‐intensified jets. The density front along the topography combined with geostrophic shear initiates SI, leading to onset of secondary shear instability, dissipation of geostrophic energy, and turbulent mixing. We explore the impact of vertical coordinate, resolution, and parameterization of shear‐driven mixing on the representation of water mass transformation. We find that in isopycnal and low‐resolutionz* simulations, limited vertical resolution leads to inadequate representation of diapycnal mixing. This motivates our development of a parameterization for SI‐driven turbulence. The parameterization is based on identifying unstable regions through a balanced Richardson number criterion and slumping isopycnals toward a balanced state. The potential energy extracted from the large‐scale flow is assumed to correspond to the kinetic energy of SI which is dissipated through shear mixing. Parameterizing submesoscale instabilities by combining isopycnal slumping with diapycnal mixing becomes crucial as ocean models move toward resolving mesoscale eddies and fronts but not the submesoscale phenomena they host.

     
    more » « less