skip to main content

Title: Two-fold symmetric superconductivity in few-layer NbSe2
The strong Ising spin–orbit coupling in certain two-dimensional transition metal dichalcogenides can profoundly affect the superconducting state in few-layer samples. For example, in NbSe2, this effect combines with the reduced dimensionality to stabilize the superconducting state against magnetic fields up to ~35 T, and could lead to topological superconductivity. Here we report a two-fold rotational symmetry of the superconducting state in few-layer NbSe2 under in-plane external magnetic fields, in contrast to the three-fold symmetry of the lattice. Both the magnetoresistance and critical field exhibit this two-fold symmetry, and it also manifests deep inside the superconducting state in NbSe2/CrBr3 superconductor-magnet tunnel junctions. In both cases, the anisotropy vanishes in the normal state, demonstrating that it is an intrinsic property of the superconducting phase. We attribute the behaviour to the mixing between two closely competing pairing instabilities, namely the conventional s-wave instability typical of bulk NbSe2 and an unconventional d- or p-wave channel that emerges in few-layer NbSe2. Our results demonstrate the unconventional character of the pairing interaction in few-layer transition metal dichalcogenides and highlight the exotic superconductivity in this family of two-dimensional materials.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
2011401 1807810
Publication Date:
Journal Name:
Nature Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. Stacking layers of atomically thin transition-metal carbides and two-dimensional (2D) semiconducting transition-metal dichalcogenides, could lead to nontrivial superconductivity and other unprecedented phenomena yet to be studied. In this work, superconducting α-phase thin molybdenum carbide flakes were first synthesized, and a subsequent sulfurization treatment induced the formation of vertical heterolayer systems consisting of different phases of molybdenum carbide—ranging from α to γ′ and γ phases—in conjunction with molybdenum sulfide layers. These transition-metal carbide/disulfide heterostructures exhibited critical superconducting temperatures as high as 6 K, higher than that of the starting single-phased α-Mo 2 C (4 K). We analyzed possible interface configurations tomore »explain the observed moiré patterns resulting from the vertical heterostacks. Our density-functional theory (DFT) calculations indicate that epitaxial strain and moiré patterns lead to a higher interfacial density of states, which favors superconductivity. Such engineered heterostructures might allow the coupling of superconductivity to the topologically nontrivial surface states featured by transition-metal carbide phases composing these heterostructures potentially leading to unconventional superconductivity. Moreover, we envisage that our approach could also be generalized to other metal carbide and nitride systems that could exhibit high-temperature superconductivity.« less
  2. Do charge modulations compete with electron pairing in high-temperature copper oxide superconductors? We investigated this question by suppressing superconductivity in a stripe-ordered cuprate compound at low temperature with high magnetic fields. With increasing field, loss of three-dimensional superconducting order is followed by reentrant two-dimensional superconductivity and then an ultraquantum metal phase. Circumstantial evidence suggests that the latter state is bosonic and associated with the charge stripes. These results provide experimental support to the theoretical perspective that local segregation of doped holes and antiferromagnetic spin correlations underlies the electron-pairing mechanism in cuprates.
  3. We present a valence transition model for electron- and hole-doped cuprates, within which there occurs a discrete jump in ionicity Cu2+ -> Cu1+ in both families upon doping, at or near optimal doping in the conventionally prepared electron-doped compounds and at the pseudogap phase transition in the hole-doped materials. In thin films of the T' compounds, the valence transition has occurred already in the undoped state. The phenomenology of the valence transition is closely related to that of the neutral-to-ionic transition in mixed-stack organic charge-transfer solids. Doped cuprates have negative charge-transfer gaps, just as rare-earth nickelates and BaBiO3. The unusuallymore »high ionization energy of the closed shell Cu1+ ion, taken together with the dopingdriven reduction in three-dimensional Madelung energy and gain in two-dimensional delocalization energy in the negative charge transfer gap state drives the transition in the cuprates. The combined effects of strong correlations and small d-p electron hoppings ensure that the systems behave as effective 1/2-filled Cu band with the closed shell electronically inactive O2- ions in the undoped state, and as correlated two-dimensional geometrically frustrated 1/4-filled oxygen hole band, now with electronically inactive closed-shell Cu1+ ions, in the doped state. The model thus gives microscopic justification for the two-fluid models suggested by many authors. The theory gives the simplest yet most comprehensive understanding of experiments in the normal states. The robust commensurate antiferromagnetism in the conventional T' crystals, the strong role of oxygen deficiency in driving superconductivity and charge carrier sign corresponding to holes at optimal doping are all manifestations of the same quantum state. In the hole-doped pseudogapped state, there occurs a biaxial commensurate period 4 charge density wave state consisting of O1- -Cu l(1+)-O1- spin singlets that coexists with broken rotational C-4 symmetry due to intraunit cell oxygen inequivalence. Finite domains of this broken symmetry state will exhibit twodimensional chirality and the polar Kerr effect. Superconductivity within the model results from a destabilization of the 1/4-filled band paired Wigner crystal [Phys. Rev. B 93, 165110 (2016) and ihid. 93, 205111 (2016)]. We posit that a similar valence transition, Ir4+ -> Ir3+, occurs upon electron doping Sr2IrO4. We make testable experimental predictions in cuprates including superoxygenated La2CuO4+delta and iridates. Finally, as indirect evidence for the valence bond theory of superconductivity proposed here, we note that there exist an unusually large number of unconventional superconductors that exhibit superconductivity proximate to exotic charge ordered states, whose band fillings are universally 1/4 or 3/4, exactly where the paired Wigner crystal is most stable.« less
  4. An understanding of the normal state in the high-temperature superconducting cuprates is crucial to the ultimate understanding of the long-standing problem of the origin of the superconductivity itself. This so-called “strange metal” state is thought to be associated with a quantum critical point (QCP) hidden beneath the superconductivity. In electron-doped cuprates—in contrast to hole-doped cuprates—it is possible to access the normal state at very low temperatures and low magnetic fields to study this putative QCP and to probe the T ➔ 0 K state of these materials. We report measurements of the low-temperature normal-state magnetoresistance (MR) of the n-type cupratemore »system La 2− x Ce x CuO 4 and find that it is characterized by a linear-in-field behavior, which follows a scaling relation with applied field and temperature, for doping ( x ) above the putative QCP ( x = 0.14). The magnitude of the unconventional linear MR decreases as T c decreases and goes to zero at the end of the superconducting dome ( x ~ 0.175) above which a conventional quadratic MR is found. These results show that there is a strong correlation between the quantum critical excitations of the strange metal state and the high- T c superconductivity.« less
  5. An unconventional superconducting state was recently discovered in uranium ditelluride (UTe2), in which spin-triplet superconductivity emerges from the paramagnetic normal state of a heavy-fermion material. The coexistence of magnetic fluctuations and superconductivity, together with the crystal structure of this material, suggests that a distinctive set of symmetries, magnetic properties, and topology underlie the superconducting state. Here, we report observations of a nonzero polar Kerr effect and of two transitions in the specific heat upon entering the superconducting state, which together suggest that the superconductivity in UTe2is characterized by a two-component order parameter that breaks time-reversal symmetry. These data place constraints onmore »the symmetries of the order parameter and inform the discussion on the presence of topological superconductivity in UTe2.

    « less