skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computing hydrodynamic interactions in confined doubly periodic geometries in linear time
We develop a linearly scaling variant of the force coupling method [K. Yeo and M. R. Maxey, J. Fluid Mech. 649, 205–231 (2010)] for computing hydrodynamic interactions among particles confined to a doubly periodic geometry with either a single bottom wall or two walls (slit channel) in the aperiodic direction. Our spectrally accurate Stokes solver uses the fast Fourier transform in the periodic xy plane and Chebyshev polynomials in the aperiodic z direction normal to the wall(s). We decompose the problem into two problems. The first is a doubly periodic subproblem in the presence of particles (source terms) with free-space boundary conditions in the z direction, which we solve by borrowing ideas from a recent method for rapid evaluation of electrostatic interactions in doubly periodic geometries [Maxian et al., J. Chem. Phys. 154, 204107 (2021)]. The second is a correction subproblem to impose the boundary conditions on the wall(s). Instead of the traditional Gaussian kernel, we use the exponential of a semicircle kernel to model the source terms (body force) due to the presence of particles and provide optimum values for the kernel parameters that ensure a given hydrodynamic radius with at least two digits of accuracy and rotational and translational invariance. The computation time of our solver, which is implemented in graphical processing units, scales linearly with the number of particles, and allows computations with about a million particles in less than a second for a sedimented layer of colloidal microrollers. We find that in a slit channel, a driven dense suspension of microrollers maintains the same two-layer structure as above a single wall, but moves at a substantially lower collective speed due to increased confinement.  more » « less
Award ID(s):
2052515 2011544 1646339
PAR ID:
10437384
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
158
Issue:
15
ISSN:
0021-9606
Page Range / eLocation ID:
154101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Magnetic particles confined in microchannels can be actuated to perform translation motion using a rotating magnetic field, but their actuation in such a situation is not yet well understood. Here, the actuation of a ferromagnetic particle confined in square microchannels is studied using immersed-boundary lattice Boltzmann simulations. In wide channels, when a sphere is positioned close to a side wall but away from channel corners, it experiences a modest hydrodynamic actuation force parallel to the channel walls. This force decreases as the sphere is shifted toward the bottom wall but the opposite trend is found when the channel is narrow. When the sphere is positioned midway between the top and bottom channel walls, the actuation force decreases as the channel width decreases and can reverse its direction. These phenomena are elucidated by studying the flow and pressure fields in the channel-particle system and by analyzing the viscous and pressure components of the hydrodynamic force acting on different parts of the sphere. 
    more » « less
  2. A charge-free particle in a uniform electric field experiences no net force in an unbounded domain. A boundary, however, breaks the symmetry and the particle can be attracted or repelled to it, depending on the applied field direction [Z. Wang et al., Phys. Rev. E, 2022, 106, 034607]. Here, we investigate the effect of a second boundary because of its common occurrence in practical applications. We consider a spherical particle suspended between two parallel walls and subjected to a uniform electric field, applied in a direction either normal or tangential to the surfaces. All media are modeled as leaky dielectrics, thus allowing for the accumulation of free charge at interfaces, while bulk media remain charge-free. The Laplace equation for the electric potential is solved using a multipole expansion and the boundaries are accounted for by a set of images. The results show that in the case of a normal electric field, which corresponds to a particle between two electrodes, the force is always attractive to the nearer boundary and, in general, weaker that the case of only one wall. Intriguingly, for a given particle-wall separation we find that the force may vary nonmonotonically with confinement and its magnitude may exceed the one-wall value. In the case of tangential electric field, which corresponds to a particle between insulating boundaries, the force follows the same trends but it is always repulsive. 
    more » « less
  3. This study discusses turbulent suspension flows of non-Brownian, non-colloidal, neutrally buoyant and rigid spherical particles in a Newtonian fluid over porous media with particles too large to penetrate and move through the porous layer. We consider suspension flows with the solid volume fraction $${{\varPhi _b}}$$ ranging from 0 to 0.2, and different wall permeabilities, while porosity is constant at 0.6. Direct numerical simulations with an immersed boundary method are employed to resolve the particles and flow phase, with the volume-averaged Navier–Stokes equations modelling the flow within the porous layer. The results show that in the presence of particles in the free-flow region, the mean velocity and the concentration profiles are altered with increasing porous layer permeability because of the variations in the slip velocity and wall-normal fluctuations at the suspension-porous interface. Furthermore, we show that variations in the stress condition at the interface significantly affect the particle near-wall dynamics and migration toward the channel core, thereby inducing large modulations of the overall flow drag. At the highest volume fraction investigated here, $${{\varPhi _b}}= 0.2$$ , the velocity fluctuations and the Reynolds shear stress are found to decrease, and the overall drag increases due to the increase in the particle-induced stresses. 
    more » « less
  4. Current understanding of turbulence modulation by solid particles is incomplete as making reliable predictions on the nature and level of modulation remains a challenging task. Multiple modulation mechanisms may be simultaneously induced by particles, but the lack of reliable methods to identify these mechanisms and quantify their effects hinders a complete understanding of turbulence modulation. In this work, we present a full analysis of the turbulent kinetic energy (TKE) equation for a turbulent channel flow laden with a few fixed particles near the channel walls, in order to investigate how the wall generated turbulence interacts with the particles and how, as a result, the global turbulence statistics are modified. All terms in the budget equations of total and component-wise TKEs are explicitly computed using the data from direct numerical simulations. Particles are found to modify turbulence by two competing mechanisms: the reduction of the intrinsic turbulence production associated with a reduced mean shear due to the resistance imposed by solid particles (the first mechanism), and an additional TKE production mechanism by displacing incoming fluid (the second mechanism). The distribution of TKE in the wall-normal direction is also made more homogeneous due to the significantly enhanced pressure transport of TKE. Finally, the budget analysis of component-wise TKE reveals an enhanced inter-component TKE transfer due to the presence of particles, which leads to a more isotropic distribution of TKE among three velocity components. 
    more » « less
  5. Interference observed in a double-slit experiment most conclusively demonstrates the wave properties of particles. We construct a quantum mechanical double-slit interferometer by rovibrationally exciting molecular deuterium (D 2 ) in a biaxial ( v = 2, j = 2) state using Stark-induced adiabatic Raman passage, where v and j represent the vibrational and rotational quantum numbers, respectively. In D 2 ( v = 2, j = 2) → D 2 ( v = 2, j ′ = 0) rotational relaxation via a cold collision with ground state helium, the two coherently coupled bond axis orientations in the biaxial state act as two slits that generate two indistinguishable quantum mechanical pathways connecting initial and final states of the colliding system. The interference disappears when we decouple the two orientations of the bond axis by separately constructing the uniaxial states of D 2 , unequivocally establishing the double-slit action of the biaxial state. This double slit opens new possibilities in the coherent control of molecular collisions. 
    more » « less