Laboratory experiments were conducted to study particle migration and flow properties of non-Brownian, noncolloidal suspensions ranging from 10% to 40% particle volume fraction in a pressure-driven flow over and through a porous structure at a low Reynolds number. Particle concentration maps, velocity maps, and corresponding profiles were acquired using a magnetic resonance imaging technique. The model porous medium consists of square arrays of circular rods oriented across the flow in a rectangular microchannel. It was observed that the square arrays of the circular rods modify the velocity profiles and result in heterogeneous concentration fields for various suspensions. As the bulk particle volume fraction of the suspension increases, particles tend to concentrate in the free channel relative to the porous medium while the centerline velocity profile along the lateral direction becomes increasingly blunted. Within the porous structure, concentrated suspensions exhibit smaller periodic axial velocity variations due to the geometry compared to semidilute suspensions (bulk volume fraction ranges from 10% to 20%) and show periodic concentration variations, where the average particle concentration is slightly greater between the rods than on top of the rods. For concentrated systems, high particle concentration pathways aligned with the flow direction are observed in regions that correspond to gaps between rods within the porous medium. 
                        more » 
                        « less   
                    
                            
                            Turbulent channel flow of suspensions of neutrally buoyant particles over porous media
                        
                    
    
            This study discusses turbulent suspension flows of non-Brownian, non-colloidal, neutrally buoyant and rigid spherical particles in a Newtonian fluid over porous media with particles too large to penetrate and move through the porous layer. We consider suspension flows with the solid volume fraction $${{\varPhi _b}}$$ ranging from 0 to 0.2, and different wall permeabilities, while porosity is constant at 0.6. Direct numerical simulations with an immersed boundary method are employed to resolve the particles and flow phase, with the volume-averaged Navier–Stokes equations modelling the flow within the porous layer. The results show that in the presence of particles in the free-flow region, the mean velocity and the concentration profiles are altered with increasing porous layer permeability because of the variations in the slip velocity and wall-normal fluctuations at the suspension-porous interface. Furthermore, we show that variations in the stress condition at the interface significantly affect the particle near-wall dynamics and migration toward the channel core, thereby inducing large modulations of the overall flow drag. At the highest volume fraction investigated here, $${{\varPhi _b}}= 0.2$$ , the velocity fluctuations and the Reynolds shear stress are found to decrease, and the overall drag increases due to the increase in the particle-induced stresses. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1854376
- PAR ID:
- 10430725
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 954
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A new continuum perspective for phoretic motion is developed that is applicable to particles of any shape in ‘microstructured’ fluids such as a suspension of solute or bath particles. Using the reciprocal theorem for Stokes flow it is shown that the local osmotic pressure of the solute adjacent to the phoretic particle generates a thrust force (via a ‘slip’ velocity) which is balanced by the hydrodynamic drag such that there is no net force on the body. For a suspension of passive Brownian bath particles this perspective recovers the classical result for the phoretic velocity owing to an imposed concentration gradient. In a bath of active particles that self-propel with characteristic speed $$U_0$$ for a time $$\tau _R$$ and then change direction randomly, taking a step of size $$\ell = U_0 \tau _R$$ , at high activity the phoretic velocity is $$\boldsymbol {U} \sim - U_0 \ell \boldsymbol {\nabla } \phi _b$$ , where $$\phi _b$$ is a measure of the ‘volume’ fraction of the active bath particles. The phoretic velocity is independent of the size of the phoretic particle and of the viscosity of the suspending fluid. Because active systems are inherently out of equilibrium, phoretic motion can occur even without an imposed concentration gradient. It is shown that at high activity when the run length varies spatially, net phoretic motion results in $$\boldsymbol {U} \sim - \phi _b U_0 \boldsymbol {\nabla } \ell$$ . These two behaviours are special cases of the more general result that phoretic motion arises from a gradient in the swim pressure of active matter. Finally, it is shown that a field that orients (but does not propel) the active particles results in a phoretic velocity $$\boldsymbol {U} \sim - \phi _b U_0 \ell \boldsymbol {\nabla }\varPsi$$ , where $$\varPsi$$ is the (non-dimensional) potential associated with the field.more » « less
- 
            This study presents direct numerical simulations of turbulent Rayleigh–Bénard convection in non-colloidal suspensions, with special focus on the heat transfer modifications in the flow. Adopting a Rayleigh number of $10^8$ and Prandtl number of 7, parametric investigations of the particle volume fraction $$0\leq \varPhi \leq 40\,\%$$ and particle diameter $$1/20\leq d^*_p\leq 1/10$$ with respect to the cavity height, are carried out. The particles are neutrally buoyant, rigid spheres with physical properties that match the fluid phase. Up to $$\varPhi =25\,\%$$ , the Nusselt number increases weakly but steadily, mainly due to the increased thermal agitation that overcomes the decreased kinetic energy of the flow. Beyond $$\varPhi =30\,\%$$ , the Nusselt number exhibits a substantial drop, down to approximately 1/3 of the single-phase value. This decrease is attributed to the dense particle layering in the near-wall region, confirmed by the time-averaged local volume fraction. The dense particle layer reduces the convection in the near-wall region and negates the formation of any coherent structures within one particle diameter from the wall. Significant differences between $$\varPhi \leq 30\,\%$$ and 40 % are observed in all statistical quantities, including heat transfer and turbulent kinetic energy budgets, and two-point correlations. Special attention is also given to the role of particle rotation, which is shown to contribute to maintaining high heat transfer rates in moderate volume fractions. Furthermore, decreasing the particle size promotes the particle layering next to the wall, inducing a similar heat transfer reduction as in the highest particle volume fraction case.more » « less
- 
            Motivated by the saturation of drag reduction effectiveness at high non-dimensional riblet spacing in turbulent boundary layer flows, this study seeks to investigate the influence of a secondary blade riblet structure on flow statistics and friction drag reduction effectiveness in comparison to the widely explored single-scale blade riblet surface. The turbulent flow dynamics and drag reduction performance over single- and multi-scale blade riblet surfaces were experimentally examined in a flow visualization channel across various non-dimensional riblet spacings. The shear velocity was quantified by the streamwise velocity distributions from the logarithmic layer via planar Particle Image Velocimetry (PIV) measurements, whereas the near-wall flow dynamics were characterized by a Micro Particle Image Velocimetry (micro-PIV) system. The results highlighted that although both riblet surfaces exhibited similar drag reduction performances at low non-dimensional riblet spacings, the presence of a secondary riblet blade structure can effectively extend the drag reduction region with the non-dimensional riblet spacing up to 32 and achieve approximately 10% lower friction drag in comparison to the single-scale riblet surface when the non-dimensional riblet spacing increases to 44.2. The average number of uniform momentum zones (UMZs) on the multi-scaled blade riblet has also reduced by 9% compared to the single-scaled riblet which indicates the reduction of strong shear layers within a turbulent boundary layer. The inspection of near-wall flow statistics demonstrated that at high non-dimensional riblet spacings, the multi-scale riblet surface produces reduced wall-normal velocity fluctuations and Reynolds shear stresses. Quadrant analysis revealed that this design allows for the suppression of both the sweep and ejection events. This experimental result demonstrated that surfaces with spanwise variations of riblet heights have the potential to maintain drag reduction effectiveness across a wider range of flow speeds.more » « less
- 
            In collisional gas–solid flows, dense particle clusters are often observed that greatly affect the transport properties of the mixture. The characterisation and prediction of this phenomenon are challenging due to limited optical access, the wide range of scales involved and the interplay of different mechanisms. Here, we consider a laboratory setup in which particles fall against upward-moving air in a square vertical duct: a classic configuration in riser reactors. The use of non-cohesive, monodispersed, spherical particles and the ability to independently vary the solid volume fraction ( $$\varPhi _V = 0.1\,\% - 0.8\,\%$$ ) and the bulk airflow Reynolds number ( $$Re_{bulk} = 300 - 1200$$ ) allows us to isolate key elements of the multiphase dynamics, providing the first laboratory observation of cluster-induced turbulence. Above a threshold $$\varPhi _V$$ , the system exhibits intense fluctuations of concentration and velocity, as measured by high-speed imaging via a backlighting technique which returns optically depth-averaged fields. The space–time autocorrelations reveal dense and persistent mesoscale structures falling faster than the surrounding particles and trailing long wakes. These are shown to be the statistical footprints of visually observed clusters, mostly found in the vicinity of the walls. They are identified via a percolation analysis, tracked in time, and characterised in terms of size, shape, location and velocity. Larger clusters are denser, longer-lived and have greater descent velocity. At the present particle Stokes number, the threshold $$\varPhi _V \sim 0.5$$ % (largely independent from $$Re_{bulk}$$ ) is consistent with the view that clusters appear when the typical interval between successive collisions is shorter than the particle response time.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    