skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lived Experiences of Former STEM Undergraduate Mentors of an Afterschool Mentoring Program: An Interpretative Phenomenological Analysis
Studies have identified gaps in the development of undergraduate students in science, technology, engineering, and mathematics (STEM). Students lack communication and problem-solving, impeding employment opportunities post-graduation. It is essential to prepare students for employment in STEM fields, as these fields remain in high demand and offer competitive wages for economic stability. Research has revealed that students gain critical thinking and problem-solving skills through students mentoring experiences. Evidence surrounding the inclusion of active learning strategies for in-classroom pedagogy has expanded in recent years, but the support mechanisms beyond the classroom remain unclear. Herein, we followed students for a decade after participation in our mentoring pre-professional training program, Nebraska STEM for You (NE STEM 4U). This phenomenological study utilized interviewing techniques and descriptive statistics to demonstrate how a midsized, metropolitan university STEM mentoring program supported the development of NE STEM 4U participants. We found that engagement in an after-school mentoring program provided participants with a model of mentorship. Participants also developed transferable professional and personal skill sets, including communication, perspectives, conflict resolution, and professional development.  more » « less
Award ID(s):
1929154
PAR ID:
10437386
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Qualitative Report
ISSN:
2160-3715
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundDesigned in 2012 with a first implementation in 2013, NE STEM 4U is a professional development program for post-secondary students/undergraduates, and serves as a source of outreach, content knowledge generation, and STEM literacy for youth in grades kindergarten through 8th grade (ages 5–14). The model empowers post-secondary students as facilitators of inquiry-based learning within the context of an out-of-school time program. This study investigated the potential for replicating or ‘franchising’ this model by evaluating on the following: (1) Is the model replicable? And, if so, (2) what core elements are necessary for program fidelity? And (3) is there a dependency on a particular setting/participant type (e.g., a more rural or urban setting)? ResultsStrategic expansion of the program to different institutional types (i.e., Research 1, Research II, and a predominantly undergraduate institution), different geographical locations (i.e., rural and urban), and with various school district partners (i.e., large and small) determined that program fidelity and replicability required 4 core elements or criteria: (i) intentional programming, (ii) staff quality, (iii) effective partnerships, and (iv) program evaluation and continuous improvement. Importantly, we examined emergent themes by each site, as well as in combination (n = 16 focus group participants,n = 12 reflection surveys). These data indicated thatFlexibility(21.22%), Student Engagement (i.e., Youth)(19.53%), Classroom Management (i.e., also pertaining to youth)(19.31%), and Communication(15.71%) were the themes most referenced by the post-secondary student mentors in the NE STEM 4U program, regardless of site. Finally, the YPQA results demonstrate general replication of program quality in a “franchise” location. ConclusionsThese results highlight the core elements of the NE STEM 4U program for consideration of expansion (through strategic replication or ‘franchising’) as a possible international model. The findings and voices highlight the program’s trajectory toward success into environments that expand professional development for post-secondary students, and for delivering STEM opportunities for youth. 
    more » « less
  2. Raju, PK (Ed.)
    Experiences during post-secondary education can accentuate the ongoing, ever-changing process of developing 21st-century skills for undergraduate students. These 21st-century skills, including critical thinking (CT), are important for students to develop for competitive job placement after graduation. The future workforce requires diverse knowledge, skills, and dispositions to navigate complex and ever-changing jobs, especially in science, technology, engineering, and mathematics (STEM) fields. Purpose: This project aimed to qualitatively investigate previously determined quantitative attributes of CT to gain a deeper understanding of how these attributes manifest themselves in undergraduate STEM scholars’ problem-solving and decision-making. Sample: Twelve program undergraduate student participants from a STEM professional development program partook in completing materials for this study. Methods: We used a phenomenology approach to explore the nuances of CT attributes from the responses of our program participants. We explored how the eight CT attributes (induction, analysis, inference, evaluation, deduction, interpretation, explanation, numeracy) emerged from participant responses, in isolation and in interaction with each other in undergraduate STEM students’ responses to real-world scenarios to find potential trends or insights to better understand the intricate nature of critical thinking as a construct. Results: While we aimed to explore CT attributes in isolation based on their previously defined definitions, our findings demonstrate that certain CT attributes occurred concurrently with other CT attributes at higher frequencies than others (e.g., analysis and induction). These concurrent attributes show that undergraduate students identified various entry points to a real-life scenario, and simultaneously find multiple solutions to these complex problems. The findings of this exploratory study suggest areas for STEM program improvement based on the qualitative examination of whether CT attributes are present, and how they might also happen concurrently more frequently when undergraduate students face real-life decision-making scenarios. Conclusions: Findings from this study will help create a more robust program model for undergraduate student development to meet STEM workforce demands and competitive job placement after graduation. A deep understanding of what makes up this complex construct is essential to increase students’ CT skills. Further research in this area may explore how CT attributes offer additional insights for framing undergraduate professional development programs. With careful attention to distinct and concurrent attributes, carefully designed professional development might be more effective and transferrable to STEM fields. 
    more » « less
  3. Raju, PK (Ed.)
    Experiences during post-secondary education can accentuate the ongoing, ever-changing process of developing 21st-century skills for undergraduate students. These 21st-century skills, including critical thinking (CT), are important for students to develop for competitive job placement after graduation. The future workforce requires diverse knowledge, skills, and dispositions to navigate complex and ever-changing jobs, especially in science, technology, engineering, and mathematics (STEM) fields. Purpose: This project aimed to qualitatively investigate previously determined quantitative attributes of CT to gain a deeper understanding of how these attributes manifest themselves in undergraduate STEM scholars’ problem-solving and decision-making. Sample: Twelve program undergraduate student participants from a STEM professional development program partook in completing materials for this study. Methods: We used a phenomenology approach to explore the nuances of CT attributes from the responses of our program participants. We explored how the eight CT attributes (induction, analysis, inference, evaluation, deduction, interpretation, explanation, numeracy) emerged from participant responses, in isolation and in interaction with each other in undergraduate STEM students’ responses to real-world scenarios to find potential trends or insights to better understand the intricate nature of critical thinking as a construct. Results: While we aimed to explore CT attributes in isolation based on their previously defined definitions, our findings demonstrate that certain CT attributes occurred concurrently with other CT attributes at higher frequencies than others (e.g., analysis and induction). These concurrent attributes show that undergraduate students identified various entry points to a real-life scenario, and simultaneously find multiple solutions to these complex problems. The findings of this exploratory study suggest areas for STEM program improvement based on the qualitative examination of whether CT attributes are present, and how they might also happen concurrently more frequently when undergraduate students face real-life decision-making scenarios. Conclusions: Findings from this study will help create a more robust program model for undergraduate student development to meet STEM workforce demands and competitive job placement after graduation. A deep understanding of what makes up this complex construct is essential to increase students’ CT skills. Further research in this area may explore how CT attributes offer additional insights for framing undergraduate professional development programs. With careful attention to distinct and concurrent attributes, carefully designed professional development might be more effective and transferrable to STEM fields. 
    more » « less
  4. Despite the adaptive strengths and unique problem-solving skills demonstrated by neurodivergent (ND) individuals, they remain underrepresented in Science, Technology, Engineering and Mathematics (STEM) fields. High unemployment rates among individuals with disabilities emphasize the need for addressing barriers to entry and persistence in the workforce. This study introduces a program designed to enhance opportunities for neurodivergent STEM scholars with financial needs, supported by the National Science Foundation (NSF). The program involves: 1) a weekly cohort course to engage in professional development, 2) use of the Birkman Method® survey to help scholars identify and communicate strengths, fostering self-awareness and growth, and 3) one-on-one mentoring with STEM faculty and career counselors to assist students in identifying and pursuing internship opportunities and developing career paths. This paper, co-written by cohort scholars, highlights the program’s successes, to date, in facilitating internships for neurodivergent students, addressing challenges associated with executive function, and providing ongoing support through cohort activities and mentorship. Overall, the program seeks to bridge the gap between neurodivergent scholars and STEM opportunities. 
    more » « less
  5. Elementary school is the first opportunity most students have to learn about STEM; however, elementary teachers are sometimes the least confident and prepared to teach STEM concepts and practices. Research Experience for Teachers (RET) programs are an established form of K-12 teacher professional development in which teachers are invited to work as members of a laboratory research team to increase their enthusiasm, knowledge and experience in STEM fields. The Engineering for Biology: Multidisciplinary Research Experiences for Teachers (MRET) of Elementary Grades was a 7-week summer program in which teachers were embedded as contributing members of engineering laboratory research teams and was established with the goals of (1) increasing teacher knowledge of STEM concepts and practices, (2) fostering mentoring relationships among researchers and teachers in each laboratory, and (3) guiding the translation of the teachers’ laboratory experience into the classroom through the development of STEM learning units. This exploratory study focuses on the second goal, and involves the use of developmental network theory to discriminate mentoring among participants within the summer 2017 and 2018 cycles of MRET. Using data collected in daily observations as well as daily activity and conversation logs submitted by all participants during the lab experience, post participation surveys, and post program semi structured interviews, we have characterized a network of mentoring that existed within the lab portion of MRET as being multidirectional and potentially beneficial to all members, including researchers as well as teachers. This finding challenges the currently accepted assumption that teachers are the primary beneficiaries of mentoring within RET programs. If demonstrated to be appropriate and transferrable to the RET context, such a perspective could enhance our understanding of the experience and be used for maximizing the outcomes for all participants. 
    more » « less