skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating road traffic impacts of commute mode shifts
This work considers the sensitivity of commute travel times in US metro areas due to potential changes in commute patterns, for example caused by events such as pandemics. Permanent shifts away from transit and carpooling can add vehicles to congested road networks, increasing travel times. Growth in the number of workers who avoid commuting and work from home instead can offset travel time increases. To estimate these potential impacts, 6-9 years of American Community Survey commute data for 118 metropolitan statistical areas are investigated. For 74 of the metro areas, the average commute travel time is shown to be explainable using only the number of passenger vehicles used for commuting. A universal Bureau of Public Roads model characterizes the sensitivity of each metro area with respect to additional vehicles. The resulting models are then used to determine the change in average travel time for each metro area in scenarios when 25% or 50% of transit and carpool users switch to single occupancy vehicles. Under a 25% mode shift, areas such as San Francisco and New York that are already congested and have high transit ridership may experience round trip travel time increases of 12 minutes (New York) to 20 minutes (San Francisco), costing individual commuters $1065 and $1601 annually in lost time. The travel time increases and corresponding costs can be avoided with an increase in working from home. The main contribution of this work is to provide a model to quantify the potential increase in commute travel times under various behavior changes, that can aid policy making for more efficient commuting.  more » « less
Award ID(s):
2033580
PAR ID:
10437407
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Jin, Sheng
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
1
ISSN:
1932-6203
Page Range / eLocation ID:
e0279738
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of routing a large fleet of drones to deliver packages simultaneously across broad urban areas. Besides flying directly, drones can use public transit vehicles such as buses and trams as temporary modes of transportation to conserve energy. Adding this capability to our formulation augments effective drone travel range and the space of possible deliveries but also increases problem input size due to the large transit networks. We present a comprehensive algorithmic framework that strives to minimize the maximum time to complete any delivery and addresses the multifaceted computational challenges of our problem through a two-layer approach. First, the upper layer assigns drones to package delivery sequences with an approximately optimal polynomial time allocation algorithm. Then, the lower layer executes the allocation by periodically routing the fleet over the transit network, using efficient, bounded suboptimal multi-agent pathfinding techniques tailored to our setting. We demonstrate the efficiency of our approach on simulations with up to 200 drones, 5000 packages, and transit networks with up to 8000 stops in San Francisco and the Washington DC Metropolitan Area. Our framework computes solutions for most settings within a few seconds on commodity hardware and enables drones to extend their effective range by a factor of nearly four using transit. 
    more » « less
  2. West, Brooke (Ed.)
    Objectives An Opioid Treatment Desert is an area with limited accessibility to medication-assisted treatment and recovery facilities for Opioid Use Disorder. We explored the concept of Opioid Treatment Deserts including racial differences in potential spatial accessibility and applied it to one Midwestern urban county using high resolution spatiotemporal data. Methods We obtained individual-level data from one Emergency Medical Services (EMS) agency (Columbus Fire Department) in Franklin County, Ohio. Opioid overdose events were based on EMS runs where naloxone was administered from 1/1/2013 to 12/31/2017. Potential spatial accessibility was measured as the time (in minutes) it would take an individual, who may decide to seek treatment after an opioid overdose, to travel from where they had the overdose event, which was a proxy measure of their residential location, to the nearest opioid use disorder (OUD) treatment provider that provided medically-assisted treatment (MAT). We estimated accessibility measures overall, by race and by four types of treatment providers (any type of MAT for OUD, Buprenorphine, Methadone, or Naltrexone). Areas were classified as an Opioid Treatment Desert if the estimate travel time to treatment provider (any type of MAT for OUD) was greater than a given threshold. We performed sensitivity analysis using a range of threshold values based on multiple modes of transportation (car and public transit) and using only EMS runs to home/residential location types. Results A total of 6,929 geocoded opioid overdose events based on data from EMS agencies were used in the final analysis. Most events occurred among 26–35 years old (34%), identified as White adults (56%) and male (62%). Median travel times and interquartile range (IQR) to closest treatment provider by car and public transit was 2 minutes (IQR: 3 minutes) and 17 minutes (IQR: 17 minutes), respectively. Several neighborhoods in the study area had limited accessibility to OUD treatment facilities and were classified as Opioid Treatment Deserts. Travel time by public transit for most treatment provider types and by car for Methadone-based treatment was significantly different between individuals who were identified as Black adults and White adults based on their race. Conclusions Disparities in access to opioid treatment exist at the sub-county level in specific neighborhoods and across racial groups in Columbus, Ohio and can be quantified and visualized using local public safety data (e.g., EMS runs). Identification of Opioid Treatment Deserts can aid multiple stakeholders better plan and allocate resources for more equitable access to MAT for OUD and, therefore, reduce the burden of the opioid epidemic while making better use of real-time public safety data to address a public health epidemic that has turned into a public safety crisis. 
    more » « less
  3. Driverless or fully automated vehicles (AVs) are expected to fundamentally change how individuals and households travel and how vehicles use roadway infrastructure. The first goal of this study is to develop a modeling framework of activity-constrained household travel in a future multi-modal network with private AVs, shared-use AVs, transit, and intermodal AV-transit travel options. The second goal is to analyze the potential impacts of AVs—including intermodal AV-transit travel—on (a) household-level travel behavior, (b) household travel costs, (c) demand for transport modes, including transit, and (d) vehicle kilometers traveled or VKT. To meet the first goal, we propose and formulate the Household Activity Pattern Problem with AV-enabled Intermodal Trips (HAPP-AV-IT) that incorporates AV deadheading and intermodal AV-transit trips. The modeling framework extends prior HAPP-based formulations that model household-level travel decisions as vehicle (and person) routing and scheduling problems, similar to the pickup and delivery problem with time-windows. To meet the second goal, we apply the HAPP-AV-IT to two case studies and conduct many computational experiments. We use synthetic activity location data for synthetic households and a fictitious medium-size network with a road network, transit network, residential locations, activity locations, and parking locations. The computational results illustrate (a) the critical role that household AV ownership plays in terms of household travel decisions, modal demand, and VKT, (b) that with AVs, deadheading accounts for 30–40 % of vehicle operating distances, (c) that around 10 % of households in the study region benefit from AV-based intermodal trips, and (d) that those 10 % of households see 5 % reductions in household travel costs and 25 % reductions in VKT on average in the most transit friendly scenario. This last finding suggests that intermodal AV-transit trips may exist in a driverless vehicle future, and therefore, transit agencies and transportation planners should consider how to serve this market. We also propose and test a simple heuristic algorithm that quickly solves HAPP-AV-IT problem instances. 
    more » « less
  4. Abstract This article examines the effects of two widely used geomasking methods (aggregation and the bimodal Gaussian method) on errors in car‐ and transit‐based travel times from people's homes to health facilities using Cook County in Illinois as a case study area. It addresses two research questions: (Q1) How do the effects of geomasking on travel time errors differ between transportation modes? (Q2) How do errors in car‐ and transit‐based travel times differ between urban and suburban areas? The results indicate that geomasking introduces considerable errors in travel times. Specifically, errors in transit‐based travel times are significantly higher than those in car‐based travel times. Moreover, when large radii are used for geomasking, errors in car‐based travel times in urban areas are significantly higher than those in suburban areas. On the contrary, transit‐based travel time errors in urban areas are significantly lower than those in suburban areas. Because transportation modes and urban area types play essential roles in travel time errors caused by geomasking, researchers need to mitigate these errors when using geomasked locations for their analysis (e.g., evaluating the spatial accessibility of certain facilities, such as hospitals or healthy food outlets). 
    more » « less
  5. Human behavior is notoriously difficult to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring about long-term behavioral changes. During the pandemic, people have been forced to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. A critical question going forward is how these experiences have actually changed preferences and habits in ways that might persist after the pandemic ends. Many observers have suggested theories about what the future will bring, but concrete evidence has been lacking. We present evidence on how much US adults expect their own postpandemic choices to differ from their prepandemic lifestyles in the areas of telecommuting, restaurant patronage, air travel, online shopping, transit use, car commuting, uptake of walking and biking, and home location. The analysis is based on a nationally representative survey dataset collected between July and October 2020. Key findings include that the “new normal” will feature a doubling of telecommuting, reduced air travel, and improved quality of life for some. 
    more » « less