The Global Wearable market is anticipated to rise at a considerable rate in the next coming years and communication is a fundamental block in any wearable device. In communication, encryption methods are being used with the aid of microcontrollers or software implementations, which are power-consuming and incorporate complex hardware implementation. Internet of Things (IoT) devices are considered as resource-constrained devices that are expected to operate with low computational power and resource utilization criteria. At the same time, recent research has shown that IoT devices are highly vulnerable to emerging security threats, which elevates the need for low-power and small-size hardware-based security countermeasures. Chaotic encryption is a method of data encryption that utilizes chaotic systems and non-linear dynamics to generate secure encryption keys. It aims to provide high-level security by creating encryption keys that are sensitive to initial conditions and difficult to predict, making it challenging for unauthorized parties to intercept and decode encrypted data. Since the discovery of chaotic equations, there have been various encryption applications associated with them. In this paper, we comprehensively analyze the physical and encryption attacks on continuous chaotic systems in resource-constrained devices and their potential remedies. To this aim, we introduce different categories of attacks of chaotic encryption. Our experiments focus on chaotic equations implemented using Chua’s equation and leverages circuit architectures and provide simulations proof of remedies for different attacks. These remedies are provided to block the attackers from stealing users’ information (e.g., a pulse message) with negligible cost to the power and area of the design. 
                        more » 
                        « less   
                    
                            
                            Implementation of Chaotic Encryption Architecture on FPGA for On-Chip Secure Communication
                        
                    
    
            Chaos is an interesting phenomenon for nonlinear systems that emerges due to its complex and unpredictable behavior. With the escalated use of low-powered edge-compute devices, data security at the edge develops the need for security in communication. The characteristic that Chaos synchronizes over time for two different chaotic systems with their own unique initial conditions, is the base for chaos implementation in communication. This paper proposes an encryption architecture suitable for communication of on-chip sensors to provide a POC (proof of concept) with security encrypted on the same chip using different chaotic equations. In communication, encryption is achieved with the help of microcontrollers or software implementations that use more power and have complex hardware implementation. The small IoT devices are expected to be operated on low power and constrained with size. At the same time, these devices are highly vulnerable to security threats, which elevates the need to have low power/size hardware-based security. Since the discovery of chaotic equations, they have been used in various encryption applications. The goal of this research is to take the chaotic implementation to the CMOS level with the sensors on the same chip. The hardware co-simulation is demonstrated on an FPGA board for Chua encryption/decryption architecture. The hardware utilization for Lorenz, SprottD, and Chua on FPGA is achieved with Xilinx System Generation (XSG) toolbox which reveals that Lorenz’s utilization is ~9% lesser than Chua’s. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2131156
- PAR ID:
- 10437437
- Date Published:
- Journal Name:
- IEEE Green Energy and Systems Conference IGESC
- ISSN:
- 2640-0138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Cloud deployments now increasingly provision FPGA accelerators as part of virtual instances. While FPGAs are still essentially single-tenant, the growing demand for hardware acceleration will inevitably lead to the need for methods and architectures supporting FPGA multi-tenancy. In this paper, we propose an architecture supporting space-sharing of FPGA devices among multiple tenants in the cloud. The proposed architecture implements a network-on-chip (NoC) designed for fast data movement and low hardware footprint. Prototyping the proposed architecture on a Xilinx Virtex Ultrascale + demonstrated near specification maximum frequency for on-chip data movement and high throughput in virtual instance access to hardware accelerators. We demonstrate similar performance compared to single-tenant deployment while increasing FPGA utilization (we achieved 6× higher FPGA utilization with our case study), which is one of the major goals of virtualization. Overall, our NoC interconnect achieved about 2× higher maximum frequency than the state-of-the-art and a bandwidth of 25.6 Gbpsmore » « less
- 
            Algorithm-hardware Co-optimization for Energy-efficient Drone Detection on Resource-constrained FPGAConvolutional neural network (CNN)-based object detection has achieved very high accuracy; e.g., single-shot multi-box detectors (SSDs) can efficiently detect and localize various objects in an input image. However, they require a high amount of computation and memory storage, which makes it difficult to perform efficient inference on resource-constrained hardware devices such as drones or unmanned aerial vehicles (UAVs). Drone/UAV detection is an important task for applications including surveillance, defense, and multi-drone self-localization and formation control. In this article, we designed and co-optimized an algorithm and hardware for energy-efficient drone detection on resource-constrained FPGA devices. We trained an SSD object detection algorithm with a custom drone dataset. For inference, we employed low-precision quantization and adapted the width of the SSD CNN model. To improve throughput, we use dual-data rate operations for DSPs to effectively double the throughput with limited DSP counts. For different SSD algorithm models, we analyze accuracy or mean average precision (mAP) and evaluate the corresponding FPGA hardware utilization, DRAM communication, and throughput optimization. We evaluated the FPGA hardware for a custom drone dataset, Pascal VOC, and COCO2017. Our proposed design achieves a high mAP of 88.42% on the multi-drone dataset, with a high energy efficiency of 79 GOPS/W and throughput of 158 GOPS using the Xilinx Zynq ZU3EG FPGA device on the Open Vision Computer version 3 (OVC3) platform. Our design achieves 1.1 to 8.7× higher energy efficiency than prior works that used the same Pascal VOC dataset, using the same FPGA device, but at a low-power consumption of 2.54 W. For the COCO dataset, our MobileNet-V1 implementation achieved an mAP of 16.8, and 4.9 FPS/W for energy-efficiency, which is ∼ 1.9× higher than prior FPGA works or other commercial hardware platforms.more » « less
- 
            Cloud deployments now increasingly exploit Field-Programmable Gate Array (FPGA) accelerators as part of virtual instances. While cloud FPGAs are still essentially single-tenant, the growing demand for efficient hardware acceleration paves the way to FPGA multi-tenancy. It then becomes necessary to explore architectures, design flows, and resource management features that aim at exposing multi-tenant FPGAs to the cloud users. In this article, we discuss a hardware/software architecture that supports provisioning space-shared FPGAs in Kernel-based Virtual Machine (KVM) clouds. The proposed hardware/software architecture introduces an FPGA organization that improves hardware consolidation and support hardware elasticity with minimal data movement overhead. It also relies on VirtIO to decrease communication latency between hardware and software domains. Prototyping the proposed architecture with a Virtex UltraScale+ FPGA demonstrated near specification maximum frequency for on-chip data movement and high throughput in virtual instance access to hardware accelerators. We demonstrate similar performance compared to single-tenant deployment while increasing FPGA utilization, which is one of the goals of virtualization. Overall, our FPGA design achieved about 2× higher maximum frequency than the state of the art and a bandwidth reaching up to 28 Gbps on 32-bit data width.more » « less
- 
            Chaos is a deterministic phenomenon that emerges under certain conditions in a nonlinear dynamic system when the trajectories of the state variables become periodic and highly sensitive to the initial conditions. Chaotic systems are flexible, and it has been shown that communication is possible using parametric feedback control. Chaos synchronization is the basis of using chaos in communication. Chaos synchronization refers to the characteristic that the trajectories of two identical chaotic systems, each with its own unique initial conditions, converge over time. In this paper, data extraction is performed on different chaotic equations implemented as circuits. Lorenz is the base system implemented in this paper, followed by Modified Lorenz, Chua’s, Lu¨’s, and Ro¨ssler systems. Additionally, more recent systems (e.g., SprottD Attractor) are included in the data extraction process. The robust system implementations provide an alternative to software chaos and architectures, and will further reduce the required power and area. These chaotic systems serve as alternatives for quantum era computing, which will cause synchronous and asynchronous techniques to fail. The data extracted organize different modes of chaos implementation based on the ease of their fabrication in integrated circuits. Performance metrics including power consumption, area, design load, noise, and robustness to process and temperature variant are extracted for each system to demonstrate a figure of merit. The figure of merit showcases chaos equations fitting to be implemented as a transmitter/receiver with a mode of chaotic ciphering in communication.more » « less
 An official website of the United States government
An official website of the United States government 
				
			
 
                                    