skip to main content


Title: BIOMIMICKING HYDROPHOBICITY USING MICROSCALE STRUCTURES FOR BIOMEDICAL APPLICATIONS
Hydrophobic surfaces provide special characteristics for biomedical applications ranging from tunable protein adsorption, cellular interactions, and hemocompatibility to antibacterial coatings. In this research, we biomimic the hair-like micro-whisker structures of magnolia leaf using a synthetic polymeric formulation. Optical and scanning electron microscopy images revealed the presence of micro-whiskers resulting in higher water contact angles. The top layer of the magnolia leaf had a contact angle of 50º as compared to the hydrophobic bottom layer at 98º. A synthetic polymeric formulation was coated on different materials to study its effect on hydrophobicity. The coating was replicated (n=3) on each of the materials used such as glass, polymer, fabric, wood, and stainless steel. A surface tensiometer was used to measure the transition from hydrophilic to hydrophobic interactions between water and the substrate materials. Contact angle measurements revealed an increase in hydrophobicity for all the materials from their original uncoated surface. Glass displayed the highest increase in contact angle from 37º to 90º. Phase analysis of the coated region was performed to characterize the surface exposure of glass substrate to the synthetic polymeric formulation. An increase in the coated region showed a significant increase in contact angle from 50º to 95º. This research lays the foundation to develop and understand hydrophobic coatings for several biomedical applications including non-fouling implant surfaces, lab-on-chip devices, and other diagnostic tools.  more » « less
Award ID(s):
2100710
NSF-PAR ID:
10437462
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biomedical Sciences Instrumentation
Volume:
58
Issue:
3
ISSN:
1938-1158
Page Range / eLocation ID:
177 to 185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This work is concerned with investigating the effect of substrate hydrophobicity and zeta potential on the dynamics and kinetics of the initial stages of bacterial adhesion. For this purpose, bacterial pathogensStaphylococcus aureusandEscherichia coliO157:H7 were inoculated on the substrates coated with thin thiol layers (i.e., 1-octanethiol, 1-decanethiol, 1-octadecanethiol, 16-mercaptohexadecanoic acid, and 2-aminoethanethiol hydrochloride) with varying hydrophobicity and surface potential. The time-resolved adhesion data revealed a transformation from an exponential dependence to a square root dependence on time upon changing the substrate from hydrophobic or hydrophilic with a negative zeta potential value to hydrophilic with a negative zeta potential for both pathogens. The dewetting of extracellular polymeric substances (EPS) produced byE.coliO157:H7 was more noticeable on hydrophobic substrates, compared to that ofS.aureus, which is attributed to the more amphiphilic nature of staphylococcal EPS. The interplay between the timescale of EPS dewetting and the inverse of the adhesion rate constant modulated the distribution ofE.coliO157:H7 within microcolonies and the resultant microcolonial morphology on hydrophobic substrates. Observed trends in the formation of bacterial monolayers rather than multilayers and microcolonies rather than isolated and evenly spaced bacterial cells could be explained by a colloidal model considering van der Waals and electrostatic double-layer interactions only after introducing the contribution of elastic energy due to adhesion-induced deformations at intercellular and substrate-cell interfaces. The gained knowledge is significant in the context of identifying surfaces with greater risk of bacterial contamination and guiding the development of novel surfaces and coatings with superior bacterial antifouling characteristics.

     
    more » « less
  2. Surface morphology, in addition to hydrophobic and electrostatic effects, can alter how proteins interact with solid surfaces. Understanding the heterogeneous dynamics of protein adsorption on surfaces with varying roughness is experimentally challenging. In this work, we use single-molecule fluorescence microscopy to study the adsorption of α-lactalbumin protein on the glass substrate covered with a self-assembled monolayer (SAM) with varying surface concentrations. Two distinct interaction mechanisms are observed: localized adsorption/desorption and continuous-time random walk (CTRW). We investigate the origin of these two populations by simultaneous single-molecule imaging of substrates with both bare glass and SAM-covered regions. SAM-covered areas of substrates are found to promote CTRW, whereas glass surfaces promote localized motion. Contact angle measurements and atomic force microscopy imaging show that increasing SAM concentration results in both increasing hydrophobicity and surface roughness. These properties lead to two opposing effects: increasing hydrophobicity promotes longer protein flights, but increasing surface roughness suppresses protein dynamics resulting in shorter residence times. Our studies suggest that controlling hydrophobicity and roughness, in addition to electrostatics, as independent parameters could provide a means to tune desirable or undesirable protein interactions with surfaces.

     
    more » « less
  3. Amphiphilic block copolymer micelles can mimic the ability of natural lung surfactant to reduce the air–water interfacial tension down close to zero and prevent the Laplace pressure-induced alveolar collapse. In this work, we investigated the air–water interfacial behaviors of polymer micelles derived from eight different poly(ethylene glycol)(PEG)-based block copolymers having different hydrophobic block chemistries to elucidate the effect of the core block chemistry on the surface mechanics of the block copolymer micelles. Aqueous micelles of about 30 nm in hydrodynamic diameter were prepared from the PEG-based block copolymers via equilibrium nanoprecipitation and spread on water surface using water as the spreading medium. Surface pressure–area isotherm and quantitative Brewster angle microscopy measurements were performed to investigate how the micelle/monolayer structures change during lateral compression of the monolayer; widely varying structural behaviors were observed, including wrinkling/collapse of micelle monolayers, and deformation and/or desorption of individual micelles. By bivariate correlation regression analysis of surface pressure-area isotherm data, it was found that the rigidity and hydrophobicity of the hydrophobic core domain, which are quantified by glass transition temperature (Tg) and water contact angle (θ) measurements, respectively, are coupled factors that need to be taken into account concurrently in order to control the surface mechanical properties of polymer micelle monolayers; micelles having rigid and strongly hydrophobic cores exhibited high surface pressure and high compressibility modulus under high compression. High surface pressure and high compressibility modulus were also found to be correlated with the formation of wrinkles in the micelle monolayer (visualized by Brewster angle microscopy). From this study, we conclude that polymer micelles based on hydrophobic block materials having higher Tg and θ are more suitable for surfactant replacement therapy applications which require the therapeutic surfactant to produce high surface pressure and modulus at the alveolar air–water interface. 
    more » « less
  4. Abstract

    A PEM fuel cell with the Nafion ionomer phase of the cathode catalyst layer (CL) that was exposed to hot dry gas during the hot‐pressing process showed improved performance over the whole current density range and ~ 220% peak power increase with humidified air at 80°C. This enhanced performance is attributed to the modified structure of the perfluorosulfonic acid (PFSA) ionomer layer in the CL during the MEA's hot‐pressing process. The dry gas exposure above the glass transition temperature (Tg) results in the aggregation of the ionic groups to retain the residue water molecules. This process separates the ionomer into ionic‐group‐rich domains and ionic‐group‐sparse domains. The ionic‐group‐sparse domains create hydrophobic interface and reactant transport channels with lower water content and thus higher oxygen solubility in the ionomer. Accordingly, the water‐unsaturated ionomer and its surface hydrophobicity enhance the kinetic‐controlled and concentration‐polarized regions of the fuel cell polarization curve, respectively. The surface hydrophobicity of the ionomer layer is analyzed by the contact angle measurement and XPS. The durability of the hydrophobic effect belowTgis demonstrated by boiling the treated material. Re‐treating the hydrophobic sample with humidified gas exposure aboveTgeventually exhibits hydrophilic features, further proving the manipulability of the ionic group distribution.

     
    more » « less
  5. Heterogeneous bonding between metals and ceramics is of significant relevance to a wide range of applications in the fields of industry, defense, and aerospace. Metal/ceramic bonding can be used in various specific part applications such as vacuum tubes, automotive use of ceramic rotors, and rocket igniter bodies. However, the bonding of ceramic to metal has been challenging mainly due to (1) the low wettability of ceramics, on which the adhesion of molten adhesive bonders is limited and (2) the large difference between the coefficients of thermal expansion (CTE) of the two dissimilar bonded materials, which develops significant mechanical stresses at the interface and potentially leads to mechanical failures. Vapor-phase deposition is a widely used thin film processing technique in both academic research laboratories and manufacturing industries. Since vapor phase coatings do not require wettability or hydrophobicity, a uniform and strongly adherent layer is deposited over virtually any substrate, including ceramics. In this presentation, we report on the effect of vapor phase-deposited interfacial metal layers on the mechanical properties of bonding between stainless steel and Zerodur (lithium aluminosilicate-based glass ceramic). Direct-current magnetron sputtering was utilized to deposit various thin interfacial layers containing Ti, Cu, or Sn. In addition, to minimize the unfavorable stress at the bonded interface due to the large CTE difference, a low temperature allow solder, that can be chemically and mechanically activated at temperatures of approximately 200 °C, was used. The solder is made from a composite of Ti-Sn-Ce-In. A custom-built fixture and universal testing machine were used to evaluate the bonding strength in shear, which was monitored in-situ with LabView throughout the measurement. The shear strength of the bonding between stainless steel and Zerodur was systematically characterized as a function of interfacial metal and metal processing temperature during sputter depositions. Maximum shear strength of the bonding of 4.36 MPa was obtained with Cu interfacial layers, compared to 3.53 MPa from Sn and 3.42 MPa from Ti adhesion promoting layers. These bonding strengths are significantly higher than those (~0.05 MPa) of contacts without interfacial reactive thin metals. The fracture surface microstructures are presented as well. It was found that the point of failure, when Cu interfacial layers were used, was between the coated Cu film and alloy bonder. This varied from the Sn and Ti interfacial layers where the main point of failure was between the interfacial film and Zerodur interface. The findings of the effect of thin adhesion promoting metal layers and failure behaviors may be of importance to some metal/ceramic heterogeneous bonding studies that require high bonding strength and low residual stresses at the bonding interface. The authors gratefully acknowledge the financial support of the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. 
    more » « less