Abstract Field-effect transistor (FET)-based biosensors allow label-free detection of biomolecules by measuring their intrinsic charges. The detection limit of these sensors is determined by the Debye screening of the charges from counter ions in solutions. Here, we use FETs with a deformed monolayer graphene channel for the detection of nucleic acids. These devices with even millimeter scale channels show an ultra-high sensitivity detection in buffer and human serum sample down to 600 zM and 20 aM, respectively, which are ∼18 and ∼600 nucleic acid molecules. Computational simulations reveal that the nanoscale deformations can form ‘electrical hot spots’ in the sensing channel which reduce the charge screening at the concave regions. Moreover, the deformed graphene could exhibit a band-gap, allowing an exponential change in the source-drain current from small numbers of charges. Collectively, these phenomena allow for ultrasensitive electronic biomolecular detection in millimeter scale structures.
more »
« less
Electrical detection of RNA cancer biomarkers at the single-molecule level
Abstract Cancer is a significant healthcare issue, and early screening methods based on biomarker analysis in liquid biopsies are promising avenues to reduce mortality rates. Electrical detection of nucleic acids at the single molecule level could enable these applications. We examine the electrical detection of RNA cancer biomarkers (KRAS mutants G12C and G12V) as a single-molecule proof-of-concept electrical biosensor for cancer screening applications. We show that the electrical conductance is highly sensitive to the sequence, allowing discrimination of the mutants from a wild-type KRAS sequence differing in just one base. In addition to this high specificity, our results also show that these biosensors are sensitive down to an individual molecule with a high signal-to-noise ratio. These results pave the way for future miniaturized single-molecule electrical biosensors that could be groundbreaking for cancer screening and other applications.
more »
« less
- Award ID(s):
- 2027530
- PAR ID:
- 10437553
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The last half-century has witnessed the birth and development of a new multidisciplinary field at the edge between materials science, nanoscience, engineering, and chemistry known as Molecular Electronics. This field deals with the electronic properties of individual molecules and their integration as active components in electronic circuits and has also been applied to biomolecules, leading to BioMolecular Electronics and opening new perspectives for single-molecule biophysics and biomedicine. Herein, we provide a brief introduction and overview of the BioMolecular electronics field, focusing on nucleic acids and potential applications for these measurements. In particular, we review the recent demonstration of the first single-molecule electrical detection of a biologically-relevant nucleic acid. We also show how this could be used to study biomolecular interactions and applications in liquid biopsy for early cancer detection, among others. Finally, we discuss future perspectives and challenges in the applications of this fascinating research field.more » « less
-
Abstract DNA‐templated silver nanoclusters (AgNC@DNA) are a novel type of nanomaterial with advantageous optical properties. Only a few atoms in size, the fluorescence of nanoclusters can be tuned using DNA overhangs. In this study, we explored the properties of AgNCs manufactured on a short single‐stranded (dC)12when adjacent G‐rich sequences (dGN, withN = 3–15) were added. The ‘red’ emission of AgNC@dC12with λMAX = 660 nm dramatically changed upon the addition of a G‐rich overhang with NG = 15. The pattern of the emission–excitation matrix (EEM) suggested the emergence of two new emissive states at λMAX = 575 nm and λMAX = 710 nm. The appearance of these peaks provides an effective way to design biosensors capable of detecting specific nucleic acid sequences with low fluorescence backgrounds. We used this property to construct an NA‐based switch that brings AgNC and the G overhang near one another, turning ‘ON’ the new fluorescence peaks only when a specific miRNA sequence is present. Next, we tested this detection switch on miR‐371, which is overexpressed in prostate cancer. The results presented provide evidence that this novel fluorescent switch is both sensitive and specific with a limit of detection close to 22 picomoles of the target miR‐371 molecule.more » « less
-
e20551 Background: Enzyme activity is at the center of all biological processes. When these activities are misregulated by changes in sequence, expression, or activity, pathologies emerge. Misregulation of protease enzymes such as Matrix Metalloproteinases and Cathepsins play a key role in the pathophysiology of cancer. We describe here a novel class of graphene-based, cost effective biosensors that can detect altered protease activation in a blood sample from early stage lung cancer patients. Methods: The Gene Expression Omnibus (GEO) tool was used to identify proteases differentially expressed in lung cancer and matched normal tissue. Biosensors were assembled on a graphene backbone annotated with one of a panel of fluorescently tagged peptides. The graphene quenches fluorescence until the peptide is either cleaved by active proteases or altered by post-translational modification. 19 protease biosensors were evaluated on 431 commercially collected serum samples from non-lung cancer controls (69%) and pathologically confirmed lung cancer cases (31%) tested over two independent cohorts. Serum was incubated with each of the 19 biosensors and enzyme activity was measured indirectly as a continuous variable by a fluorescence plate reader. Analysis was performed using Emerge, a proprietary predictive and classification modeling system based on massively parallel evolving “Turing machine” algorithms. Each analysis stratified allocation into training and testing sets, and reserved an out-of-sample validation set for reporting. Results: 256 clinical samples were initially evaluated including 35% cancer cases evenly distributed across stages I (29%), II (26%), III (24%) and IV (21%). The case controls included common co-morbidies in the at-risk population such as COPD, chronic bronchitis, and benign nodules (19%). Using the Emerge classification analysis, biosensor biomarkers alone (no clinical factors) demonstrated Sensitivity (Se.) = 92% (CI 82%-99%) and Specificity (Sp.) = 82% (CI 69%-91%) in the out-of-sample set. An independent cohort of 175 clinical cases (age 67±8, 52% male) focused on early detection (26% cancer, 70% Stage I, 30% Stage II/III) were similarly evaluated. Classification showed Se. = 100% (CI 79%-100%) and Sp. = 93% (CI 80%-99%) in the out-of-sample set. For the entire dataset of 175 samples, Se. = 100% (CI 92%-100%) and Sp. = 97% (CI 92%-99%) was observed. Conclusions: Lung cancer can be treated if it is diagnosed when still localized. Despite clear data showing screening for lung cancer by Low Dose Computed Tomography (LDCT) is effective, screening compliance remains very low. Protease biosensors provide a cost effective additional specialized tool with high sensitivity and specificity in detection of early stage lung cancer. A large prospective trial of at-risk smokers with follow up is being conducted to evaluate a commercial version of this assay.more » « less
-
91 Background: Colorectal cancer (CRC) is the third leading type of cancer worldwide, with ~150,000 new cases in the US annually and a grim 14% 5-year survival for patients diagnosed at a late stage. A lack of treatment options leads to persistently poor prognosis for patients with advanced stage disease. KRAS mutations are well known drivers of CRC and other GI cancers. Multiple KRAS mutations occur in CRC, including G12D (34%), G12V (21%), G13D (20%), G12C (8%), and others (18%). Existing KRAS-targeted therapies have limited use in CRC, underscoring the need for pan-RAS inhibitors in treating CRC and other RAS driven cancers. Objective: Assess activity of ADT-007, our pan-RAS inhibitor, on wild-type (WT) and KRAS-mutant 3D bioprinted organoid tumor (BOT) tissue using our high-throughput ex vivo platform. Methods: Using previously established bioprinting protocols, WT and mutant BOTs were printed with HT29 and HCT116 cells, respectively. HT29 is an established human WT CRC cell line with known sensitivity to proteosome and survivin inhibitors. HCT116 is a KRASG13Dmutant human CRC cell line. 3 sets of BOTs were generated and acclimated for 24h. One set was treated for 72h with proteosome inhibitor Bortezomib, another with survivin inhibitor YM155, and the third with our novel pan-RAS inhibitor ADT-007. Dose response curves were generated from both conventional ATP luminescence readouts and high-content imaging. Results: BOT tissue microarchitecture was validated and >200 µm diffusion in BOTs was confirmed using high-content imaging. Differential response was quantified using Cell TiterGlo endpoint assay as well as advanced image processing of high-content live/dead nuclear stained images captured at multiple z-plains. ADT-007 IC50was found to be substantially lower for mutant HCT116 compared to that for WT HT29 cell line BOTs, which was consistent with separately conducted in vitro and in vivo studies. Conclusions: A pan-RAS inhibitor, such as ADT-007 with high selectivity for cancer cells with activated RAS that is not limited to a specific KRAS mutant allele or RAS isozyme, could have broader use for CRC and other RAS-driven cancers. Further, due to their potential to replicate biophysical characteristics of a tumor and its microenvironment, BOT based precision and personalized medicine platforms can provide more accurate drug efficacy readout compared to in vitro cancer models.more » « less
An official website of the United States government
