Abstract BackgroundFour severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants predominated in the United States since 2021. Understanding disease severity related to different SARS-CoV-2 variants remains limited. MethodViral genome analysis was performed on SARS-CoV-2 clinical isolates circulating March 2021 through March 2022 in Cleveland, Ohio. Major variants were correlated with disease severity and patient outcomes. ResultsIn total 2779 patients identified with either Alpha (n = 1153), Gamma (n = 122), Delta (n = 808), or Omicron variants (n = 696) were selected for analysis. No difference in frequency of hospitalization, intensive care unit (ICU) admission, and death were found among Alpha, Gamma, and Delta variants. However, patients with Omicron infection were significantly less likely to be admitted to the hospital, require oxygen, or admission to the ICU (χ2 = 12.8, P < .001; χ2 = 21.6, P < .002; χ2 = 9.6, P = .01, respectively). In patients whose vaccination status was known, a substantial number had breakthrough infections with Delta or Omicron variants (218/808 [26.9%] and 513/696 [73.7%], respectively). In breakthrough infections, hospitalization rate was similar regardless of variant by multivariate analysis. No difference in disease severity was identified between Omicron subvariants BA.1 and BA.2. ConclusionsDisease severity associated with Alpha, Gamma, and Delta variants is comparable while Omicron infections are significantly less severe. Breakthrough disease is significantly more common in patients with Omicron infection. 
                        more » 
                        « less   
                    
                            
                            SARS-CoV-2 Variants in Rhode Island; May 2022 Update
                        
                    
    
            BACKGROUND: Genomic surveillance allows identification of circulating SARS-CoV-2 variants. We provide an update on the evolution of SARS-CoV-2 in Rhode Island (RI). METHODS: All publicly available SARS-CoV-2 RI sequences were retrieved from https://www.gisaid.org. Genomic analyses were conducted to identify variants of concern (VOC), variants being monitored (VBM), or non-VOC/non-VBM, and investigate their evolution. RESULTS: Overall, 17,340 SARS-CoV-2 RI sequences were available between 2/2020–5/2022 across five (globally recognized) major waves, including 1,462 (8%) sequences from 36 non VOC/non-VBM until 5/2021; 10,565 (61%) sequences from 8 VBM between 5/2021–12/2021, most commonly Delta; and 5,313 (31%) sequences from the VOC Omicron from 12/2021 onwards. Genomic analyses demonstrated 71 Delta and 44 Omicron sub-lineages, with occurrence of variant-defining mutations in other variants. CONCLUSION: Statewide SARS-CoV-2 genomic surveillance allows for continued characterization of circulating variants and monitoring of viral evolution, which inform the local health force and guide public health on mitigation efforts against COVID-19. KEYWORDS: COVID-19, SARS-CoV-2, variants, genomic sequencing, Rhode Island 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1655221
- PAR ID:
- 10437673
- Date Published:
- Journal Name:
- Rhode Island medical journal
- Volume:
- 105
- Issue:
- 6
- ISSN:
- 2327-2228
- Page Range / eLocation ID:
- 6-11
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The genomic diversity of SARS-CoV-2 is the result of a relatively low level of spontaneous mutations introduced during viral replication. With millions of SARS-CoV-2 genome sequences now available, we can begin to assess the overall genetic repertoire of this virus. We find that during 2020, there was a global wave of one variant that went largely unnoticed, possibly because its members were divided over several sublineages (B.1.177 and sublineages B.1.177.XX). We collectively call this Janus, and it was eventually replaced by the Alpha (B.1.1.7) variant of concern (VoC), next replaced by Delta (B.1.617.2), which itself might soon be replaced by a fourth pandemic wave consisting of Omicron (B.1.1.529). We observe that splitting up and redefining variant lineages over time, as was the case with Janus and is now happening with Alpha, Delta and Omicron, is not helpful to describe the epidemic waves spreading globally. Only ∼5% of the 30 000 nucleotides of the SARS-CoV-2 genome are found to be variable. We conclude that a fourth wave of the pandemic with the Omicron variant might not be that different from other VoCs, and that we may already have the tools in hand to effectively deal with this new VoC.more » « less
- 
            Abstract SARS-CoV-2 receptor binding domains (RBDs) interact with both the ACE2 receptor and heparan sulfate on the surface of host cells to enhance SARS-CoV-2 infection. We show that suramin, a polysulfated synthetic drug, binds to the ACE2 receptor and heparan sulfate binding sites on the RBDs of wild-type, Delta, and Omicron variants. Specifically, heparan sulfate and suramin had enhanced preferential binding for Omicron RBD, and suramin is most potent against the live SARS-CoV-2 Omicron variant (B.1.1.529) when compared to wild type and Delta (B.1.617.2) variants in vitro. These results suggest that inhibition of live virus infection occurs through dual SARS-CoV-2 targets of S-protein binding and previously reported RNA-dependent RNA polymerase inhibition and offers the possibility for this and other polysulfated molecules to be used as potential therapeutic and prophylactic options against COVID-19.more » « less
- 
            Abstract SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a ‘decoy’ to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy,FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments.FLIFdisplayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) againstFLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys likeFLIFmay be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants.more » « less
- 
            Background Understanding community transmission of SARS-CoV-2 variants of concern (VOCs) is critical for disease control in the post pandemic era. The Delta variant (B.1.617.2) emerged in late 2020 and became the dominant VOC globally in the summer of 2021. While the epidemiological features of the Delta variant have been extensively studied, how those characteristics shaped community transmission in urban settings remains poorly understood. Methods Using high-resolution contact tracing data and testing records, we analyze the transmission of SARS-CoV-2 during the Delta wave within New York City (NYC) from May 2021 to October 2021. We reconstruct transmission networks at the individual level and across 177 ZIP code areas, examine network structure and spatial spread patterns, and use statistical analysis to estimate the effects of factors associated with COVID-19 spread. Results We find considerable individual variations in reported contacts and secondary infections, consistent with the pre-Delta period. Compared with earlier waves, Delta-period has more frequent long-range transmission events across ZIP codes. Using socioeconomic, mobility and COVID-19 surveillance data at the ZIP code level, we find that a larger number of cumulative cases in a ZIP code area is associated with reduced within- and cross-ZIP code transmission and the number of visitors to each ZIP code is positively associated with the number of non-household infections identified through contact tracing and testing. Conclusions The Delta variant produced greater long-range spatial transmission across NYC ZIP code areas, likely caused by its increased transmissibility and elevated human mobility during the study period. Our findings highlight the potential role of population immunity in reducing transmission of VOCs. Quantifying variability of immunity is critical for identifying subpopulations susceptible to future VOCs. In addition, non-pharmaceutical interventions limiting human mobility likely reduced SARS-CoV-2 spread over successive pandemic waves and should be encouraged for reducing transmission of future VOCs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    