skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geometric sieve over number fields for higher moments
Abstract The geometric sieve for densities is a very convenient tool proposed by Poonen and Stoll (and independently by Ekedahl) to compute the density of a given subset of the integers. In this paper we provide an effective criterion to find all higher moments of the density (e.g. the mean, the variance) of a subset of a finite dimensional free module over the ring of algebraic integers of a number field. More precisely, we provide a geometric sieve that allows the computation of all higher moments corresponding to the density, over a general number fieldK. This work advances the understanding of geometric sieve for density computations in two ways: on one hand, it extends a result of Bright, Browning and Loughran, where they provide the geometric sieve for densities over number fields; on the other hand, it extends the recent result on a geometric sieve for expected values over the integers to both the ring of algebraic integers and to moments higher than the expected value. To show how effective and applicable our method is, we compute the density, mean and variance of Eisenstein polynomials and shifted Eisenstein polynomials over number fields. This extends (and fully covers) results in the literature that were obtained with ad-hoc methods.  more » « less
Award ID(s):
2127742
PAR ID:
10437699
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Research in Number Theory
Volume:
9
Issue:
3
ISSN:
2522-0160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Hilbert class polynomial has as roots the j -invariants of elliptic curves whose endomorphism ring is a given imaginary quadratic order. It can be used to compute elliptic curves over finite fields with a prescribed number of points. Since its coefficients are typically rather large, there has been continued interest in finding alternative modular functions whose corresponding class polynomials are smaller. Best known are Weber’s functions, which reduce the size by a factor of 72 for a positive density subset of imaginary quadratic discriminants. On the other hand, Bröker and Stevenhagen showed that no modular function will ever do better than a factor of 100.83. We introduce a generalization of class polynomials, with reduction factors that are not limited by the Bröker–Stevenhagen bound. We provide examples matching Weber’s reduction factor. For an infinite family of discriminants, their reduction factors surpass those of all previously known modular functions by a factor at least 2. 
    more » « less
  2. We show that for certain non-CM elliptic curves E / Q E_{/\mathbb {Q}} such that 3 3 is an Eisenstein prime of good reduction, a positive proportion of the quadratic twists E ψ E_{\psi } of E E have Mordell–Weil rank one and the 3 3 -adic height pairing on E ψ ( Q ) E_{\psi }(\mathbb {Q}) is non-degenerate. We also show similar but weaker results for other Eisenstein primes. The method of proof also yields examples of middle codimensional algebraic cycles over number fields of arbitrarily large dimension (generalized Heegner cycles) that have non-zero p p -adic height. It is not known – though expected – that the archimedian height of these higher-codimensional cycles is non-zero. 
    more » « less
  3. Abstract We formulate a general problem: Given projective schemes and over a global fieldKand aK‐morphism η from to of finite degree, how many points in of height at mostBhave a pre‐image under η in ? This problem is inspired by a well‐known conjecture of Serre on quantitative upper bounds for the number of points of bounded height on an irreducible projective variety defined over a number field. We give a nontrivial answer to the general problem when and is a prime degree cyclic cover of . Our tool is a new geometric sieve, which generalizes the polynomial sieve to a geometric setting over global function fields. 
    more » « less
  4. null (Ed.)
    Abstract We present a new method for the stable reconstruction of a class of binary images from a small number of measurements. The images we consider are characteristic functions of algebraic domains, that is, domains defined as zero loci of bivariate polynomials, and we assume to know only a finite set of uniform samples for each image. The solution to such a problem can be set up in terms of linear equations associated to a set of image moments. However, the sensitivity of the moments to noise makes the numerical solution highly unstable. To derive a robust image recovery algorithm, we represent algebraic polynomials and the corresponding image moments in terms of bivariate Bernstein polynomials and apply polynomial-generating, refinable sampling kernels. This approach is robust to noise, computationally fast and simple to implement. We illustrate the performance of our reconstruction algorithm from noisy samples through extensive numerical experiments. Our code is released open source and freely available. 
    more » « less
  5. We consider the secure computation problem in a minimal model, where Alice and Bob each holds an input and wish to securely compute a function of their inputs at Carol without revealing any additional information about the inputs. For this minimal secure computation problem, we propose a novel coding scheme built from two steps. First, the function to be computed is expanded such that it can be recovered while additional information might be leaked. Second, a randomization step is applied to the expanded function such that the leaked information is protected. We implement this expand-and-randomize coding scheme with two algebraic structures—the finite field and the modulo ring of integers, where the expansion step is realized with the addition operation and the randomization step is realized with the multiplication operation over the respective algebraic structures. 
    more » « less