Abstract We show how the Weil pairing can be used to evaluate the assigned characters of an imaginary quadratic order $${\mathcal {O}}$$ O in an unknown ideal class $$[{\mathfrak {a}}] \in {{\,\textrm{cl}\,}}({\mathcal {O}})$$ [ a ] ∈ cl ( O ) that connects two given $${\mathcal {O}}$$ O -oriented elliptic curves $$(E, \iota )$$ ( E , ι ) and $$(E', \iota ') = [{\mathfrak {a}}](E, \iota )$$ ( E ′ , ι ′ ) = [ a ] ( E , ι ) . When specialized to ordinary elliptic curves over finite fields, our method is conceptually simpler and often somewhat faster than a recent approach due to Castryck, Sotáková and Vercauteren, who rely on the Tate pairing instead. The main implication of our work is that it breaks the decisional Diffie–Hellman problem for practically all oriented elliptic curves that are acted upon by an even-order class group. It can also be used to better handle the worst cases in Wesolowski’s recent reduction from the vectorization problem for oriented elliptic curves to the endomorphism ring problem, leading to a method that always works in sub-exponential time.
more »
« less
Generalized class polynomials
Abstract The Hilbert class polynomial has as roots the j -invariants of elliptic curves whose endomorphism ring is a given imaginary quadratic order. It can be used to compute elliptic curves over finite fields with a prescribed number of points. Since its coefficients are typically rather large, there has been continued interest in finding alternative modular functions whose corresponding class polynomials are smaller. Best known are Weber’s functions, which reduce the size by a factor of 72 for a positive density subset of imaginary quadratic discriminants. On the other hand, Bröker and Stevenhagen showed that no modular function will ever do better than a factor of 100.83. We introduce a generalization of class polynomials, with reduction factors that are not limited by the Bröker–Stevenhagen bound. We provide examples matching Weber’s reduction factor. For an infinite family of discriminants, their reduction factors surpass those of all previously known modular functions by a factor at least 2.
more »
« less
- Award ID(s):
- 1946311
- PAR ID:
- 10420415
- Date Published:
- Journal Name:
- Research in Number Theory
- Volume:
- 8
- Issue:
- 4
- ISSN:
- 2522-0160
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose a quantum algorithm for computing an isogeny between two elliptic curves E1,E2 defined over a finite field such that there is an imaginary quadratic order O satisfying O~End(Ei )for i=1,2. This concerns ordinary curves and supersingular curves defined over Fp (the latter used in the recent CSIDH proposal). Our algorithm has heuristic asymptotic run time exp(O(√log(|Δ|))) and requires polynomial quantum memory and exp(O(√log(|Δ|))) quantumly accessible classical memory, where Δ is the discriminant of O. This asymptotic complexity outperforms all other available methods for computing isogenies.We also show that a variant of our method has asymptotic run time e exp(Õ(√log(|Δ|))) while requesting only polynomial memory (both quantum and classical).more » « less
-
Let $$A$$ be a non-isotrivial ordinary abelian surface over a global function field of characteristic $p>0$ with good reduction everywhere. Suppose that $$A$$ does not have real multiplication by any real quadratic field with discriminant a multiple of $$p$$ . We prove that there are infinitely many places modulo which $$A$$ is isogenous to the product of two elliptic curves.more » « less
-
Ta-Shma, Amnon (Ed.)We study the fundamental challenge of exhibiting explicit functions that have small correlation with low-degree polynomials over 𝔽₂. Our main contributions include: 1) In STOC 2020, CHHLZ introduced a new technique to prove correlation bounds. Using their technique they established new correlation bounds for low-degree polynomials. They conjectured that their technique generalizes to higher degree polynomials as well. We give a counterexample to their conjecture, in fact ruling out weaker parameters and showing what they prove is essentially the best possible. 2) We propose a new approach for proving correlation bounds with the central "mod functions," consisting of two steps: (I) the polynomials that maximize correlation are symmetric and (II) symmetric polynomials have small correlation. Contrary to related results in the literature, we conjecture that (I) is true. We argue this approach is not affected by existing "barrier results." 3) We prove our conjecture for quadratic polynomials. Specifically, we determine the maximum possible correlation between quadratic polynomials modulo 2 and the functions (x_1,… ,x_n) → z^{∑ x_i} for any z on the complex unit circle, and show that it is achieved by symmetric polynomials. To obtain our results we develop a new proof technique: we express correlation in terms of directional derivatives and analyze it by slowly restricting the direction. 4) We make partial progress on the conjecture for cubic polynomials, in particular proving tight correlation bounds for cubic polynomials whose degree-3 part is symmetric.more » « less
-
We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus$$g>1$$whose Jacobians have Mordell–Weil rank$$g$$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients$$X_0^+(N)$$of prime level$$N$$, the curve$$X_{S_4}(13)$$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve$$X_{\scriptstyle \mathrm { ns}} ^+ (17)$$.more » « less
An official website of the United States government

