skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A multiscale chemical-mechanical model predicts impact of morphogen spreading on tissue growth
Abstract The exact mechanism controlling cell growth remains a grand challenge in developmental biology and regenerative medicine. The Drosophila wing disc tissue serves as an ideal biological model to study mechanisms involved in growth regulation. Most existing computational models for studying tissue growth focus specifically on either chemical signals or mechanical forces. Here we developed a multiscale chemical-mechanical model to investigate the growth regulation mechanism based on the dynamics of a morphogen gradient. By comparing the spatial distribution of dividing cells and the overall tissue shape obtained in model simulations with experimental data of the wing disc, it is shown that the size of the domain of the Dpp morphogen is critical in determining tissue size and shape. A larger tissue size with a faster growth rate and more symmetric shape can be achieved if the Dpp gradient spreads in a larger domain. Together with Dpp absorbance at the peripheral zone, the feedback regulation that downregulates Dpp receptors on the cell membrane allows for further spreading of the morphogen away from its source region, resulting in prolonged tissue growth at a more spatially homogeneous growth rate.  more » « less
Award ID(s):
2029814 2215705 1853701 2131963
PAR ID:
10437732
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
npj Systems Biology and Applications
Volume:
9
Issue:
1
ISSN:
2056-7189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract How a developing organ robustly coordinates the cellular mechanics and growth to reach a final size and shape remains poorly understood. Through iterations between experiments and model simulations that include a mechanistic description of interkinetic nuclear migration, we show that the local curvature, height, and nuclear positioning of cells in theDrosophilawing imaginal disc are defined by the concurrent patterning of actomyosin contractility, cell-ECM adhesion, ECM stiffness, and interfacial membrane tension. We show that increasing cell proliferation via different growth-promoting pathways results in two distinct phenotypes. Triggering proliferation through insulin signaling increases basal curvature, but an increase in growth through Dpp signaling and Myc causes tissue flattening. These distinct phenotypic outcomes arise from differences in how each growth pathway regulates the cellular cytoskeleton, including contractility and cell-ECM adhesion. The coupled regulation of proliferation and cytoskeletal regulators is a general strategy to meet the multiple context-dependent criteria defining tissue morphogenesis. 
    more » « less
  2. The temporal dynamics of morphogen presentation impacts transcriptional responses and tissue patterning (1). However, the mechanisms controlling morphogen release are far from clear. We found that inwardly rectifying potassium (Irk) channels regulate endogenous transient increases in intracellular calcium and Bone Morphogenetic Protein (BMP/Dpp) release for Drosophila wing development (2). Inhibition of Irk channels reduces BMP/Dpp signaling, and ultimately disrupts wing morphology (2, 3). Ion channels impact development of several tissues and organisms in which BMP signaling is essential (2-15). In neurons and pancreatic beta cells, Irk channels modulate membrane potential to affect intracellular Ca++ to control secretion of neurotransmitters and insulin (15-21). Based on Irk activity in neurons, we hypothesized that electrical activity controls endoplasmic reticulum Ca++ release into the cytoplasm to regulate the release of BMP. To test this hypothesis, we reduced expression of proteins that control endoplasmic reticulum calcium (Stim, Orai, SERCA, SK, and Best2) and documented wing phenotypes. We found that reduced Stim and SERCA function decreases amplitude and frequency of endogenous calcium transients in the wing disc and reduced Dpp/BMP release in the wing disc. Together, our results suggest control of endoplasmic reticulum is required for Dpp/BMP release. 
    more » « less
  3. Morphogen signaling contributes to the patterned spatiotemporal expression of genes during development. One mode of regulation of signaling-responsive genes is at the level of transcription. Single-cell quantitative studies of transcription have revealed that transcription occurs intermittently, in bursts. Although the effects of many gene regulatory mechanisms on transcriptional bursting have been studied, it remains unclear how morphogen gradients affect this dynamic property of downstream genes. Here we have adapted single molecule fluorescence in situ hybridization (smFISH) for use in the Drosophila wing imaginal disc in order to measure nascent and mature mRNA of genes downstream of the Wg and Dpp morphogen gradients. We compared our experimental results with predictions from stochastic models of transcription, which indicated that the transcription levels of these genes appear to share a common method of control via burst frequency modulation. Our data helps further elucidate the link between developmental gene regulatory mechanisms and transcriptional bursting. 
    more » « less
  4. During epithelial wound healing, cell morphology near the healed wound and the healing rate vary strongly among different developmental stages even for a single species like Drosophila. We develop deformable particle (DP) model simulations to understand how variations in cell mechanics give rise to distinct wound closure phenotypes in the Drosophila embryonic ectoderm and larval wing disc epithelium. We find that plastic deformation of the cell membrane can generate large changes in cell shape consistent with wound closure in the embryonic ectoderm. Our results show that the embryonic ectoderm is best described by cell membranes with an elasto-plastic response, whereas the larval wing disc is best described by cell membranes with an exclusively elastic response. By varying the mechanical response of cell membranes in DP simulations, we recapitulate the wound closure behavior of both the embryonic ectoderm and the larval wing disc. 
    more » « less
  5. Efficient allocation of energy resources to key physiological functions allows living organisms to grow and thrive in diverse environments and adapt to a wide range of perturbations. To quantitatively understand how unicellular organisms utilize their energy resources in response to changes in growth environment, we introduce a theory of dynamic energy allocation that describes cellular growth dynamics by partitioning metabolizable energy into key physiological functions: growth, division, cell shape regulation, energy storage and loss through dissipation. By optimizing the energy flux for growth, we develop the equations governing the time evolution of cell morphology and growth rate in diverse environments. The resulting model accurately captures experimentally observed dependencies of bacterial cell size on growth rate, superlinear scaling of metabolic rate with cell size and predicts nutrient-dependent trade-offs between energy expended for growth, division and shape maintenance. By calibrating model parameters with experimental data for the model organismEscherichia coli, our model describes bacterial growth control in dynamic conditions, particularly during nutrient shifts and osmotic shocks. Integrating both the mechanical properties of the cell and underlying biochemical regulation, our model predicts the driving factors behind a wide range of observed morphological and growth phenomena with minimal added complexity. 
    more » « less