There often is a dilemma between ease of optimization and robust out-of-distribution (OoD) generalization. For instance, many OoD methods rely on penalty terms whose optimization is challenging. They are either too strong to optimize reliably or too weak to achieve their goals. We propose to initialize the networks with a rich representation containing a palette of potentially useful features, ready to be used by even simple models. On the one hand, a rich representation provides a good initialization for the optimizer. On the other hand, it also provides an inductive bias that helps OoD generalization. Such a representation is constructed with the Rich Feature Construction (RFC) algorithm, also called the Bonsai algorithm, which consists of a succession of training episodes. During discovery episodes, we craft a multi-objective optimization criterion and its associated datasets in a manner that prevents the network from using the features constructed in the previous iterations. During synthesis episodes, we use knowledge distillation to force the network to simultaneously represent all the previously discovered features. Initializing the networks with Bonsai representations consistently helps six OoD methods achieve top performance on ColoredMNIST benchmark. The same technique substantially outperforms comparable results on the Wilds Camelyon17 task, eliminates the high result variance that plagues other methods, and makes hyperparameter tuning and model selection more reliable.
more »
« less
Learning useful representations for shifting tasks and distributions
Does the dominant approach to learn representations (as a side effect of optimizing an expected cost for a single training distribution) remain a good approach when we are dealing with multiple distributions? Our thesis is that such scenarios are better served by representations that are richer than those obtained with a single optimization episode. We support this thesis with simple theoretical arguments and with experiments utilizing an apparently na\"ıve ensembling technique: concatenating the representations obtained from multiple training episodes using the same data, model, algorithm, and hyper-parameters, but different random seeds. These independently trained networks perform similarly. Yet, in a number of scenarios involving new distributions, the concatenated representation performs substantially better than an equivalently sized network trained with a single training run. This proves that the representations constructed by multiple training episodes are in fact different. Although their concatenation carries little additional information about the training task under the training distribution, it becomes substantially more informative when tasks or distributions change. Meanwhile, a single training episode is unlikely to yield such a redundant representation because the optimization process has no reason to accumulate features that do not incrementally improve the training performance.
more »
« less
- Award ID(s):
- 1922658
- PAR ID:
- 10437758
- Date Published:
- Journal Name:
- ICML 2023
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In general, graph representation learning methods assume that the train and test data come from the same distribution. In this work we consider an underexplored area of an otherwise rapidly developing field of graph representation learning: The task of out-of-distribution (OOD) graph classification, where train and test data have different distributions, with test data unavailable during training. Our work shows it is possible to use a causal model to learn approximately invariant representations that better extrapolate between train and test data. Finally, we conclude with synthetic and real-world dataset experiments showcasing the benefits of representations that are invariant to train/test distribution shifts.more » « less
-
Sparse auto-encoders are useful for extracting low-dimensional representations from high-dimensional data. However, their performance degrades sharply when the input noise at test time differs from the noise employed during training. This limitation hinders the applicability of auto-encoders in real-world scenarios where the level of noise in the input is unpredictable. In this paper, we formalize single hidden layer sparse auto-encoders as a transform learning problem. Leveraging the transform modeling interpretation, we propose an optimization problem that leads to a predictive model invariant to the noise level at test time. In other words, the same pre-trained model is able to generalize to different noise levels. The proposed optimization algorithm, derived from the square root lasso, is translated into a new, computationally efficient auto-encoding architecture. After proving that our new method is invariant to the noise level, we evaluate our approach by training networks using the proposed architecture for denoising tasks. Our experimental results demonstrate that the trained models yield a significant improvement in stability against varying types of noise compared to commonly used architectures.more » « less
-
Introduction The notion of a single localized store of word representations has become increasingly less plausible as evidence has accumulated for the widely distributed neural representation of wordform grounded in motor, perceptual, and conceptual processes. Here, we attempt to combine machine learning methods and neurobiological frameworks to propose a computational model of brain systems potentially responsible for wordform representation. We tested the hypothesis that the functional specialization of word representation in the brain is driven partly by computational optimization. This hypothesis directly addresses the unique problem of mapping sound and articulation vs. mapping sound and meaning. Results We found that artificial neural networks trained on the mapping between sound and articulation performed poorly in recognizing the mapping between sound and meaning and vice versa. Moreover, a network trained on both tasks simultaneously could not discover the features required for efficient mapping between sound and higher-level cognitive states compared to the other two models. Furthermore, these networks developed internal representations reflecting specialized task-optimized functions without explicit training. Discussion Together, these findings demonstrate that different task-directed representations lead to more focused responses and better performance of a machine or algorithm and, hypothetically, the brain. Thus, we imply that the functional specialization of word representation mirrors a computational optimization strategy given the nature of the tasks that the human brain faces.more » « less
-
Acoustic word embeddings are fixed-dimensional representations of variable-length speech segments. In settings where unlabelled speech is the only available resource, such embeddings can be used in "zero-resource" speech search, indexing and discovery systems. Here we propose to train a single supervised embedding model on labelled data from multiple well-resourced languages and then apply it to unseen zero-resource languages. For this transfer learning approach, we consider two multilingual recurrent neural network models: a discriminative classifier trained on the joint vocabularies of all training languages, and a correspondence autoencoder trained to reconstruct word pairs. We test these using a word discrimination task on six target zero-resource languages. When trained on seven well-resourced languages, both models perform similarly and outperform unsupervised models trained on the zero-resource languages. With just a single training language, the second model works better, but performance depends more on the particular training--testing language pair.more » « less
An official website of the United States government

