skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gamma-ray light curves and spectra of classical novae
ABSTRACT The nucleosynthesis in classical novae, in particular that of radioactive isotopes, is directly measurable by its γ-ray signature. Despite decades of observations, MeV γ-rays from novae have never been detected – neither individually at the time of the explosion, nor as a result of radioactive decay, nor the diffuse Galactic emission from the nova population. Thanks to recent developments in modelling of instrumental background for MeV telescopes such as INTEGRAL/SPI and Fermi/GBM, the prospects to finally detect these elusive transients are greatly enhanced. This demands for updated and refined models of γ-ray spectra and light curves of classical novae. In this work, we develop numerical models of nova explosions using sub- and near-Chandrasekhar CO white dwarfs as the progenitor. We study the parameter dependence of the explosions, their thermodynamics and energetics, as well as their chemical abundance patterns. We use a Monte Carlo radiative transfer code to compute γ-ray light curves and spectra, with a focus on the early time evolution. We compare our results to previous studies and find that the expected 511-keV-line flash at the time of the explosion is heavily suppressed, showing a maximum flux of only $$10^{-9}\, \mathrm{ph\, cm^{-2}\, s^{-1}}$$ and thus making it at least one million times fainter than estimated before. This finding would render it impossible for current MeV instruments to detect novae within the first day after the outburst. Nevertheless, our time-resolved spectra can be used for retrospective analyses of archival data, thereby improving the sensitivity of the instruments.  more » « less
Award ID(s):
2011759
PAR ID:
10437815
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
1008 to 1021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Shocks in γ-ray emitting classical novae are expected to produce bright thermal and non-thermal X-rays. We test this prediction with simultaneous NuSTAR and Fermi/LAT observations of nova V906 Car, which exhibited the brightest GeV γ-ray emission to date. The nova is detected in hard X-rays while it is still γ-ray bright, but contrary to simple theoretical expectations, the detected 3.5–78 keV emission of V906 Car is much weaker than the simultaneously observed >100 MeV emission. No non-thermal X-ray emission is detected, and our deep limits imply that the γ-rays are likely hadronic. After correcting for substantial absorption (NH ≈ 2 × 1023 cm−2), the thermal X-ray luminosity (from a 9 keV optically thin plasma) is just ∼2 per cent of the γ-ray luminosity. We consider possible explanations for the low thermal X-ray luminosity, including the X-rays being suppressed by corrugated, radiative shock fronts or the X-rays from the γ-ray producing shock are hidden behind an even larger absorbing column (NH > 1025 cm−2). Adding XMM–Newton and Swift/XRT observations to our analysis, we find that the evolution of the intrinsic X-ray absorption requires the nova shell to be expelled 24 d after the outburst onset. The X-ray spectra show that the ejecta are enhanced in nitrogen and oxygen, and the nova occurred on the surface of a CO-type white dwarf. We see no indication of a distinct supersoft phase in the X-ray light curve, which, after considering the absorption effects, may point to a low mass of the white dwarf hosting the nova. 
    more » « less
  2. We survey our understanding of classical novae—nonterminal, thermonuclear eruptions on the surfaces of white dwarfs in binary systems. The recent and unexpected discovery of GeV gamma rays from Galactic novae has highlighted the complexity of novae and their value as laboratories for studying shocks and particle acceleration. We review half a century of nova literature through this new lens, and conclude the following: ▪  The basics of the thermonuclear runaway theory of novae are confirmed by observations. The white dwarf sustains surface nuclear burning for some time after runaway, and until recently, it was commonly believed that radiation from this nuclear burning solely determines the nova's bolometric luminosity. ▪  The processes by which novae eject material from the binary system remain poorly understood. Mass loss from novae is complex (sometimes fluctuating in rate, velocity, and morphology) and often prolonged in time over weeks, months, or years. ▪  The complexity of the mass ejection leads to gamma-ray-producing shocks internal to the nova ejecta. When gamma rays are detected (around optical maximum), the shocks are deeply embedded and the surrounding gas is very dense. ▪  Observations of correlated optical and gamma-ray light curves confirm that the shocks are radiative and contribute significantly to the bolometric luminosity of novae. Novae are therefore the closest and most common interaction-powered transients. 
    more » « less
  3. ABSTRACT Peaking at 3.7 mag on 2020 July 11, YZ Ret was the second-brightest nova of the decade. The nova’s moderate proximity (2.7 kpc, from Gaia) provided an opportunity to explore its multiwavelength properties in great detail. Here, we report on YZ Ret as part of a long-term project to identify the physical mechanisms responsible for high-energy emission in classical novae. We use simultaneous Fermi/LAT and NuSTAR observations complemented by XMM–Newton X-ray grating spectroscopy to probe the physical parameters of the shocked ejecta and the nova-hosting white dwarf. The XMM–Newton observations revealed a supersoft X-ray emission which is dominated by emission lines of C v, C vi, N vi, N vii, and O viii rather than a blackbody-like continuum, suggesting CO-composition of the white dwarf in a high-inclination binary system. Fermi/LAT-detected YZ Ret for 15 d with the γ-ray spectrum best described by a power law with an exponential cut-off at 1.9 ± 0.6 GeV. In stark contrast with theoretical predictions and in keeping with previous NuSTAR observations of Fermi-detected classical novae (V5855 Sgr and V906 Car), the 3.5–78-keV X-ray emission is found to be two orders of magnitude fainter than the GeV emission. The X-ray emission observed by NuSTAR is consistent with a single-temperature thermal plasma model. We do not detect a non-thermal tail of the GeV emission expected to extend down to the NuSTAR band. NuSTAR observations continue to challenge theories of high-energy emission from shocks in novae. 
    more » « less
  4. ABSTRACT A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low- and high-mass X-ray binaries containing compact objects, isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar-wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array Observatory (CTAO) and the prospects for studying them with Target of Opportunity observations. We show that CTAO will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. Since some of these sources could also exhibit emission at larger time-scales, we additionally test their detectability at longer exposures. We finally discuss the multiwavelength synergies with other instruments and large astronomical facilities. 
    more » « less
  5. Abstract We present the first estimate of the Galactic nova rate based on optical transient surveys covering the entire sky. Using data from the All-Sky Automated Survey for Supernovae (ASAS-SN) and Gaia—the only two all-sky surveys to report classical nova candidates—we find 39 confirmed Galactic novae and 7 additional unconfirmed candidates discovered from 2019 to 2021, yielding a nova discovery rate of ≈14 yr−1. Using accurate Galactic stellar mass models and three-dimensional dust maps and incorporating realistic nova light curves, we have built a sophisticated Galactic nova model to estimate the fraction of Galactic novae discovered by these surveys over this time period. The observing capabilities of each survey are distinct: the high cadence of ASAS-SN makes it sensitive to fast novae, while the broad observing filter and high spatial resolution of Gaia make it more sensitive to highly reddened novae across the entire Galactic plane and bulge. Despite these differences, we find that ASAS-SN and Gaia give consistent Galactic nova rates, with a final joint nova rate of 26 ± 5 yr−1. This inferred nova rate is substantially lower than found by many other recent studies. Critically assessing the systematic uncertainties in the Galactic nova rate, we argue that the role of faint, fast-fading novae has likely been overestimated, but that subtle details in the operation of transient alert pipelines can have large, sometimes unappreciated effects on transient recovery efficiency. Our predicted nova rate can be directly tested with forthcoming red/near-infrared transient surveys in the southern hemisphere. 
    more » « less