skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Systematic quark/gluon identification with ratios of likelihoods
A bstract Discriminating between quark- and gluon-initiated jets has long been a central focus of jet substructure, leading to the introduction of numerous observables and calculations to high perturbative accuracy. At the same time, there have been many attempts to fully exploit the jet radiation pattern using tools from statistics and machine learning. We propose a new approach that combines a deep analytic understanding of jet substructure with the optimality promised by machine learning and statistics. After specifying an approximation to the full emission phase space, we show how to construct the optimal observable for a given classification task. This procedure is demonstrated for the case of quark and gluons jets, where we show how to systematically capture sub-eikonal corrections in the splitting functions, and prove that linear combinations of weighted multiplicity is the optimal observable. In addition to providing a new and powerful framework for systematically improving jet substructure observables, we demonstrate the performance of several quark versus gluon jet tagging observables in parton-level Monte Carlo simulations, and find that they perform at or near the level of a deep neural network classifier. Combined with the rapid recent progress in the development of higher order parton showers, we believe that our approach provides a basis for systematically exploiting subleading effects in jet substructure analyses at the Large Hadron Collider (LHC) and beyond.  more » « less
Award ID(s):
2209443 1912813
PAR ID:
10437843
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
12
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract Power counting is a systematic strategy for organizing collider observables and their associated theoretical calculations. In this paper, we use power counting to characterize a class of jet substructure observables called energy flow polynomials (EFPs). EFPs provide an overcomplete linear basis for infrared-and-collinear safe jet observables, but it is known that in practice, a small subset of EFPs is often sufficient for specific jet analysis tasks. By applying power counting arguments, we obtain linear relationships between EFPs that hold for quark and gluon jets to a specific order in the power counting. We test these relations in the parton shower generator Pythia, finding excellent agreement. Power counting allows us to truncate the basis of EFPs without affecting performance, which we corroborate through a study of quark-gluon tagging and regression. 
    more » « less
  2. A bstract Measurements of jet substructure describing the composition of quark- and gluon-initiated jets are presented. Proton-proton (pp) collision data at $$ \sqrt{s} $$ s = 13 TeV collected with the CMS detector are used, corresponding to an integrated luminosity of 35.9 fb − 1 . Generalized angularities are measured that characterize the jet substructure and distinguish quark- and gluon-initiated jets. These observables are sensitive to the distributions of transverse momenta and angular distances within a jet. The analysis is performed using a data sample of dijet events enriched in gluon-initiated jets, and, for the first time, a Z+jet event sample enriched in quark-initiated jets. The observables are measured in bins of jet transverse momentum, and as a function of the jet radius parameter. Each measurement is repeated applying a “soft drop” grooming procedure that removes soft and large angle radiation from the jet. Using these measurements, the ability of various models to describe jet substructure is assessed, showing a clear need for improvements in Monte Carlo generators. 
    more » « less
  3. Abstract The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, usingTeV proton–proton collision data with an integrated luminosity of 140 fbcollected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points. 
    more » « less
  4. Infrared and collinear (IRC) safety has long been used a proxy for robustness when developing new jet substructure observables. This guiding philosophy has been carried into the deep learning era, where IRC-safe neural networks have been used for many jet studies. For graph-based neural networks, the most straightforward way to achieve IRC safety is to weight particle inputs by their energies. However, energy-weighting by itself does not guarantee that perturbative calculations of machine-learned observables will enjoy small nonperturbative corrections. In this paper, we demonstrate the sensitivity of IRC-safe networks to nonperturbative effects, by training an energy flow network (EFN) to maximize its sensitivity to hadronization. We then show how to construct Lipschitz energy flow networks ( L -EFNs), which are both IRC safe and relatively insensitive to nonperturbative corrections. We demonstrate the performance of L -EFNs on generated samples of quark and gluon jets, and showcase fascinating differences between the learned latent representations of EFNs and L -EFNs. Published by the American Physical Society2024 
    more » « less
  5. A<sc>bstract</sc> This paper presents measurements of top-antitop quark pair ($$ t\overline{t} $$ t t ¯ ) production in association with additionalb-jets. The analysis utilises 140 fb−1of proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or fourb-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, andb-jet pair properties. Observable quantities characterisingb-jets originating from the top quark decay and additionalb-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with$$ t\overline{t}b\overline{b} $$ t t ¯ b b ¯ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables. 
    more » « less