skip to main content


Title: Systematic quark/gluon identification with ratios of likelihoods
A bstract Discriminating between quark- and gluon-initiated jets has long been a central focus of jet substructure, leading to the introduction of numerous observables and calculations to high perturbative accuracy. At the same time, there have been many attempts to fully exploit the jet radiation pattern using tools from statistics and machine learning. We propose a new approach that combines a deep analytic understanding of jet substructure with the optimality promised by machine learning and statistics. After specifying an approximation to the full emission phase space, we show how to construct the optimal observable for a given classification task. This procedure is demonstrated for the case of quark and gluons jets, where we show how to systematically capture sub-eikonal corrections in the splitting functions, and prove that linear combinations of weighted multiplicity is the optimal observable. In addition to providing a new and powerful framework for systematically improving jet substructure observables, we demonstrate the performance of several quark versus gluon jet tagging observables in parton-level Monte Carlo simulations, and find that they perform at or near the level of a deep neural network classifier. Combined with the rapid recent progress in the development of higher order parton showers, we believe that our approach provides a basis for systematically exploiting subleading effects in jet substructure analyses at the Large Hadron Collider (LHC) and beyond.  more » « less
Award ID(s):
2209443 1912813
NSF-PAR ID:
10437843
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
12
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract Power counting is a systematic strategy for organizing collider observables and their associated theoretical calculations. In this paper, we use power counting to characterize a class of jet substructure observables called energy flow polynomials (EFPs). EFPs provide an overcomplete linear basis for infrared-and-collinear safe jet observables, but it is known that in practice, a small subset of EFPs is often sufficient for specific jet analysis tasks. By applying power counting arguments, we obtain linear relationships between EFPs that hold for quark and gluon jets to a specific order in the power counting. We test these relations in the parton shower generator Pythia, finding excellent agreement. Power counting allows us to truncate the basis of EFPs without affecting performance, which we corroborate through a study of quark-gluon tagging and regression. 
    more » « less
  2. A bstract Measurements of jet substructure describing the composition of quark- and gluon-initiated jets are presented. Proton-proton (pp) collision data at $$ \sqrt{s} $$ s = 13 TeV collected with the CMS detector are used, corresponding to an integrated luminosity of 35.9 fb − 1 . Generalized angularities are measured that characterize the jet substructure and distinguish quark- and gluon-initiated jets. These observables are sensitive to the distributions of transverse momenta and angular distances within a jet. The analysis is performed using a data sample of dijet events enriched in gluon-initiated jets, and, for the first time, a Z+jet event sample enriched in quark-initiated jets. The observables are measured in bins of jet transverse momentum, and as a function of the jet radius parameter. Each measurement is repeated applying a “soft drop” grooming procedure that removes soft and large angle radiation from the jet. Using these measurements, the ability of various models to describe jet substructure is assessed, showing a clear need for improvements in Monte Carlo generators. 
    more » « less
  3. A bstract We present the first complete next-to-leading-order (NLO) prediction with full jet algorithm implementation for the single inclusive jet production in pA collisions at forward rapidities within the color glass condensate (CGC) effective theory. Our prediction is fully differential over the final state physical kinematics, which allows the implementation of any infra-red safe observable including the jet clustering procedure. The NLO calculation is organized with the aid of the observable originated power counting proposed in [1] which gives rise to the novel soft contributions in the CGC factorization. We achieve the fully-differential calculation by constructing suitable subtraction terms to handle the singularities in the real corrections. The subtraction contributions can be exactly integrated analytically. We present the NLO cross section with the jets constructed using the anti- k T algorithm. The NLO calculation demonstrates explicitly the validity of the CGC factorization in jet production. Furthermore, as a byproduct of the subtraction method, we also derive the fully analytic cross section for the forward jet production in the small- R limit. We show that in the small- R approximation, the forward jet cross section can be factorized into a semi-hard cross section that produces a parton and the semi-inclusive jet functions (siJFs). We argue that this feature holds for generic jet production and jet substructure observables in the CGC framework. Last, we show numerical analyses of the derived formula to validate our calculations. We justify when the small- R approximation is appropriate. Like forward hadron production, the obtained NLO result also exhibits the negativity of the cross section in the large jet transverse regime, which signals the need for the threshold resummation. A sketch of the threshold resummation in the CGC framework is presented based on the multiple emission picture and it is found to agree with the approach using the rapidity renormalization group equation developed in [2]. 
    more » « less
  4. Abstract This article presents new measurements of the fragmentation properties of jets in both proton–proton (pp) and heavy-ion collisions with the ALICE experiment at the Large Hadron Collider (LHC). We report distributions of the fraction z r of transverse momentum carried by subjets of radius r within jets of radius R . Charged-particle jets are reconstructed at midrapidity using the anti- k T algorithm with jet radius R = 0 . 4, and subjets are reconstructed by reclustering the jet constituents using the anti- k T algorithm with radii r = 0 . 1 and r = 0 . 2. In proton–proton collisions, we measure both the inclusive and leading subjet distributions. We compare these measurements to perturbative calculations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold resummation and hadronization effects on the z r distribution. In heavy-ion collisions, we measure the leading subjet distributions, which allow access to a region of harder jet frag- mentation than has been probed by previous measurements of jet quenching via hadron fragmentation distributions. The z r distributions enable extraction of the parton-to-subjet fragmentation function and allow for tests of the universality of jet fragmentation functions in the quark–gluon plasma (QGP). We find no significant modification of z r distributions in Pb–Pb compared to pp collisions. However, the distributions are also consistent with a hardening trend for z r < 0 . 95, as predicted by several jet quenching models. As z r → 1 our results indicate that any such hardening effects cease, exposing qualitatively new possibilities to disentangle competing jet quenching mechanisms. By comparing our results to theoretical calculations based on an independent extraction of the parton-to-jet fragmentation function, we find consistency with the universality of jet fragmentation and no indication of factorization breaking in the QGP. 
    more » « less
  5. A bstract The identification of interesting substructures within jets is an important tool for searching for new physics and probing the Standard Model at colliders. Many of these substructure tools have previously been shown to take the form of optimal transport problems, in particular the Energy Mover’s Distance (EMD). In this work, we show that the EMD is in fact the natural structure for comparing collider events, which accounts for its recent success in understanding event and jet substructure. We then present a Shape Hunting Algorithm using Parameterized Energy Reconstruction (S haper ), which is a general framework for defining and computing shape-based observables. S haper generalizes N -jettiness from point clusters to any extended, parametrizable shape. This is accomplished by efficiently minimizing the EMD between events and parameterized manifolds of energy flows representing idealized shapes, implemented using the dual-potential Sinkhorn approximation of the Wasserstein metric. We show how the geometric language of observables as manifolds can be used to define novel observables with built-in infrared-and-collinear safety. We demonstrate the efficacy of the S haper framework by performing empirical jet substructure studies using several examples of new shape-based observables. 
    more » « less