We have observed the Class 0/I protostellar system Ced110 IRS4 at an angular resolution of 0.″05 (∼10 au) as part of the Atacama Large Millimeter/submillimeter Array large program, Early Planet Formation in Embedded Disks. The 1.3 mm dust continuum emission reveals that Ced110 IRS4 is a binary system with a projected separation of ∼250 au. The continuum emissions associated with the main source and its companion, named Ced110 IRS4A and IRS4B, respectively, exhibit disk-like shapes and likely arise from dust disks around the protostars. The continuum emission of Ced110 IRS4A has a radius of ∼110 au (∼0.″6) and shows bumps along its major axis with an asymmetry. The bumps can be interpreted as a shallow, ring-like structure at a radius of ∼40 au (∼0.″2) in the continuum emission, as demonstrated from two-dimensional intensity distribution models. A rotation curve analysis on the C18O and13CO
- Award ID(s):
- 2108794
- PAR ID:
- 10437861
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 951
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 11
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract J = 2–1 lines reveals the presence of a Keplerian disk within a radius of 120 au around Ced110 IRS4A, which supports the interpretation that the dust continuum emission arises from a disk. The ring-like structure in the dust continuum emission might indicate a possible annular substructure in the surface density of the embedded disk, although the possibility that it is an apparent structure due to the optically thick continuum emission cannot be ruled out. -
Abstract While dust disks around optically visible, Class II protostars are found to be vertically thin, when and how dust settles to the midplane are unclear. As part of the Atacama Large Millimeter/submillimeter Array large program, Early Planet Formation in Embedded Disks, we analyze the edge-on, embedded, Class I protostar IRAS 04302+2247, also nicknamed the “Butterfly Star.” With a resolution of 0.″05 (8 au), the 1.3 mm continuum shows an asymmetry along the minor axis that is evidence of an optically thick and geometrically thick disk viewed nearly edge-on. There is no evidence of rings and gaps, which could be due to the lack of radial substructure or the highly inclined and optically thick view. With 0.″1 (16 au) resolution, we resolve the 2D snow surfaces, i.e., the boundary region between freeze-out and sublimation, for12CO
J = 2–1,13COJ = 2–1, C18OJ = 2–1,H 2COJ = 30,3–20,2, and SOJ = 65–54, and constrain the CO midplane snow line to ∼130 au. We find Keplerian rotation around a protostar of 1.6 ± 0.4M ⊙using C18O. Through forward ray-tracing using RADMC-3D, we find that the dust scale height is ∼6 au at a radius of 100 au from the central star and is comparable to the gas pressure scale height. The results suggest that the dust of this Class I source has yet to vertically settle significantly. -
Abstract Precise estimates of protostellar masses are crucial to characterize the formation of stars of low masses down to brown dwarfs (BDs;
M *< 0.08M ☉). The most accurate estimation of protostellar mass uses the Keplerian rotation in the circumstellar disk around the protostar. To apply the Keplerian rotation method to a protostar at the low-mass end, we have observed the Class 0 protostar IRAS 16253-2429 using the Atacama Large Millimeter/submillimeter Array (ALMA) in the 1.3 mm continuum at an angular resolution of 0.″07 (10 au), and in the12CO, C18O,13CO (J = 2–1), and SO (J N = 65−54) molecular lines, as part of the ALMA Large Program Early Planet Formation in Embedded Disks project. The continuum emission traces a nonaxisymmetric, disk-like structure perpendicular to the associated12CO outflow. The position–velocity (PV) diagrams in the C18O and13CO lines can be interpreted as infalling and rotating motions. In contrast, the PV diagram along the major axis of the disk-like structure in the12CO line allows us to identify Keplerian rotation. The central stellar mass and the disk radius are estimated to be ∼0.12–0.17M ☉and ∼13–19 au, respectively. The SO line suggests the existence of an accretion shock at a ring (r ∼ 28 au) surrounding the disk and a streamer from the eastern side of the envelope. IRAS 16253-2429 is not a proto-BD but has a central stellar mass close to the BD mass regime, and our results provide a typical picture of such very-low-mass protostars. -
Abstract Studying the physical and chemical conditions of young embedded disks is crucial to constrain the initial conditions for planet formation. Here we present Atacama Large Millimeter/submillimeter Array observations of dust continuum at ∼0.″06 (8 au) resolution and molecular line emission at ∼0.″17 (24 au) resolution toward the Class 0 protostar L1527 IRS from the Large Program eDisk (Early Planet Formation in Embedded Disks). The continuum emission is smooth without substructures but asymmetric along both the major and minor axes of the disk as previously observed. The detected lines of12CO,13CO, C18O, H2CO, c-C3H2, SO, SiO, and DCN trace different components of the protostellar system, with a disk wind potentially visible in12CO. The13CO brightness temperature and the H2CO line ratio confirm that the disk is too warm for CO freezeout, with the snowline located at ∼350 au in the envelope. Both molecules show potential evidence of a temperature increase around the disk–envelope interface. SO seems to originate predominantly in UV-irradiated regions such as the disk surface and the outflow cavity walls rather than at the disk–envelope interface as previously suggested. Finally, the continuum asymmetry along the minor axis is consistent with the inclination derived from the large-scale (100″ or 14,000 au) outflow, but opposite to that based on the molecular jet and envelope emission, suggesting a misalignment in the system. Overall, these results highlight the importance of observing multiple molecular species in multiple transitions to characterize the physical and chemical environment of young disks.
-
Abstract We performed radiative transfer calculations and observing simulations to reproduce the 1.3 mm dust-continuum and C18O (2–1) images in the Class I protostar R CrA IRS7B-a, observed with the ALMA Large Program “Early Planet Formation in Embedded Disks (eDisk).” We found that a dust disk model passively heated by the central protostar cannot reproduce the observed peak brightness temperature of the 1.3 mm continuum emission (∼195 K), regardless of the assumptions about the dust opacity. Our calculation suggests that viscous accretion heating in the disk is required to reproduce the observed high brightness temperature. The observed intensity profile of the 1.3 mm dust-continuum emission along the disk minor axis is skewed toward the far side of the disk. Our modeling reveals that this asymmetric intensity distribution requires flaring of the dust along the disk vertical direction with the scale height following
h /r ∼r 0.3as a function of radius. These results are in sharp contrast to those of Class II disks, which show geometrically flat dust distributions and lower dust temperatures. From our modeling of the C18O (2–1) emission, the outermost radius of the gas disk is estimated to be ∼80 au, which is larger than that of the dust disk (∼62 au), to reproduce the observed distribution of the C18O (2–1) emission in IRS 7B-a. Our modeling unveils a hot and thick dust disk plus a larger gas disk around one of the eDisk targets, which could be applicable to other protostellar sources in contrast to more evolved sources.