skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ViTag: Online WiFi Fine Time Measurements Aided Vision-Motion Identity Association in Multi-person Environments
In this paper, we present ViTag to associate user identities across multimodal data, particularly those obtained from cameras and smartphones. ViTag associates a sequence of vision tracker generated bounding boxes with Inertial Measurement Unit (IMU) data and Wi-Fi Fine Time Measurements (FTM) from smartphones. We formulate the problem as association by sequence to sequence (seq2seq) translation. In this two-step process, our system first performs cross-modal translation using a multimodal LSTM encoder-decoder network (X-Translator) that translates one modality to another, e.g. reconstructing IMU and FTM readings purely from camera bounding boxes. Second, an association module finds identity matches between camera and phone domains, where the translated modality is then matched with the observed data from the same modality. In contrast to existing works, our proposed approach can associate identities in multi-person scenarios where all users may be performing the same activity. Extensive experiments in real-world indoor and outdoor environments demonstrate that online association on camera and phone data (IMU and FTM) achieves an average Identity Precision Accuracy (IDP) of 88.39% on a 1 to 3 seconds window, outperforming the state-of-the-art Vi-Fi (82.93%). Further study on modalities within the phone domain shows the FTM can improve association performance by 12.56% on average. Finally, results from our sensitivity experiments demonstrate the robustness of ViTag under different noise and environment variations.  more » « less
Award ID(s):
1901355 1919752 1901133
PAR ID:
10437904
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)
Page Range / eLocation ID:
19 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tracking subjects in videos is one of the most widely used functions in camera-based IoT applications such as security surveillance, smart city traffic safety enhancement, vehicle to pedestrian communication and so on. In computer vision domain, tracking is usually achieved by first detecting subjects, then associating detected bounding boxes across video frames. Typically, frames are transmitted to a remote site for processing, incurring high latency and network costs. To address this, we propose ViFiT, a transformerbased model that reconstructs vision bounding box trajectories from phone data (IMU and Fine Time Measurements). It leverages a transformer’s ability of better modeling long-term time series data. ViFiT is evaluated on Vi-Fi Dataset, a large-scale multimodal dataset in 5 diverse real world scenes, including indoor and outdoor environments. Results demonstrate that ViFiT outperforms the state-of-the-art approach for cross-modal reconstruction in LSTM Encoder-Decoder architecture X-Translator and achieves a high frame reduction rate as 97.76% with IMU and Wi-Fi data. 
    more » « less
  2. ABSTRACT In Smart City and Vehicle-to-Everything (V2X) systems, acquiring pedestrians’ accurate locations is crucial to traffic and pedestrian safety. Current systems adopt cameras and wireless sensors to estimate people’s locations via sensor fusion. Standard fusion algorithms, however, become inapplicable when multi-modal data is not associated. For example, pedestrians are out of the camera field of view, or data from the camera modality is missing. To address this challenge and produce more accurate location estimations for pedestrians, we propose a localization solution based on a Generative Adversarial Network (GAN) architecture. During training, it learns the underlying linkage between pedestrians’ camera-phone data correspondences. During inference, it generates refined position estimations based only on pedestrians’ phone data that consists of GPS, IMU, and FTM. Results show that our GAN produces 3D coordinates at 1 to 2 meters localization error across 5 different outdoor scenes. We further show that the proposed model supports self-learning. The generated coordinates can be associated with pedestrians’ bounding box coordinates to obtain additional camera-phone data correspondences. This allows automatic data collection during inference. Results show that after fine-tuning the GAN model on the expanded 
    more » « less
  3. Urban environments pose significant challenges to pedestrian safety and mobility. This paper introduces a novel modular sensing framework for developing real-time, multimodal streetscape applications in smart cities. Prior urban sensing systems predominantly rely either on fixed data modalities or centralized data processing, resulting in limited flexibility, high latency, and superficial privacy protections. In contrast, our framework integrates diverse sensing modalities, including cameras, mobile IMU sensors, and wearables into a unified ecosystem leveraging edge-driven distributed analytics. The proposed modular architecture, supported by standardized APIs and message-driven communication, enables hyper-local sensing and scalable development of responsive pedestrian applications. A concrete application demonstrating multimodal pedestrian tracking is developed and evaluated. It is based on the cross-modal inference module, which fuses visual and mobile IMU sensor data to associate detected entities in the camera domain with their corresponding mobile device.We evaluate our framework’s performance in various urban sensing scenarios, demonstrating an online association accuracy of 75% with a latency of ≈39 milliseconds. Our results demonstrate significant potential for broader pedestrian safety and mobility scenarios in smart cities. 
    more » « less
  4. null (Ed.)
    We demonstrate an application of finding target persons on a surveillance video. Each visually detected participant is tagged with a smartphone ID and the target person with the query ID is highlighted. This work is motivated by the fact that establishing associations between subjects observed in camera images and messages transmitted from their wireless devices can enable fast and reliable tagging. This is particularly helpful when target pedestrians need to be found on public surveillance footage, without the reliance on facial recognition. The underlying system uses a multi-modal approach that leverages WiFi Fine Timing Measurements (FTM) and inertial sensor (IMU) data to associate each visually detected individual with a corresponding smartphone identifier. These smartphone measurements are combined strategically with RGB-D information from the camera, to learn affinity matrices using a multi-modal deep learning network. 
    more » « less
  5. Multimodal sentiment analysis is a core research area that studies speaker sentiment expressed from the language, visual, and acoustic modalities. The central challenge in multimodal learning involves inferring joint representations that can process and relate information from these modalities. However, existing work learns joint representations by requiring all modalities as input and as a result, the learned representations may be sensitive to noisy or missing modalities at test time. With the recent success of sequence to sequence (Seq2Seq) models in machine translation, there is an opportunity to explore new ways of learning joint representations that may not require all input modalities at test time. In this paper, we propose a method to learn robust joint representations by translating between modalities. Our method is based on the key insight that translation from a source to a target modality provides a method of learning joint representations using only the source modality as input. We augment modality translations with a cycle consistency loss to ensure that our joint representations retain maximal information from all modalities. Once our translation model is trained with paired multimodal data, we only need data from the source modality at test time for final sentiment prediction. This ensures that our model remains robust from perturbations or missing information in the other modalities. We train our model with a coupled translationprediction objective and it achieves new state-of-the-art results on multimodal sentiment analysis datasets: CMU-MOSI, ICTMMMO, and YouTube. Additional experiments show that our model learns increasingly discriminative joint representations with more input modalities while maintaining robustness to missing or perturbed modalities. 
    more » « less