skip to main content


Title: Entrainment Rates and Their Synoptic Dependence on Wind Speed Aloft in California's Central Valley
Abstract Daytime atmospheric boundary layer (ABL) dynamics—including potential temperature budgets, water vapour budgets, and entrainment rates—are presented from in situ flight data taken on six afternoons near Fresno in the San Joaquin Valley (SJV) of California during July/August 2016. The flights took place as a part of the California Baseline Ozone Transport Study aimed at investigating transport pathways of air entering the Central Valley from offshore and mixing down to the surface. Midday entrainment velocity estimates ranged from 0.8 to 5.4 cm s −1 and were derived from a combination of continuously determined ABL heights during each flight and model-derived subsidence rates, which averaged -2.0 cm s −1 in the flight region. A strong correlation was found between entrainment velocity (normalized by the convective velocity scale) and an inverse bulk ABL Richardson number, suggesting that wind shear at the ABL top plays a significant role in driving entrainment. Similarly, we found a strong correlation between the entrainment efficiency (the ratio of entrainment to surface heat fluxes with an average of 0.23 ± 0.15) and the wind speed at the ABL top. We explore the synoptic conditions that generate higher winds near the ABL top and propose that warm anomalies in the southern Sierra Nevada mountains promote increased entrainment. Additionally, a method is outlined to estimate turbulence kinetic energy, convective velocity scale ( w * ), and the surface sensible heat flux in the ABL from a slow, airborne wind measurement system using mixed-layer similarity theory.  more » « less
Award ID(s):
1848019
NSF-PAR ID:
10437911
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Boundary-Layer Meteorology
Volume:
186
Issue:
3
ISSN:
0006-8314
Page Range / eLocation ID:
505 to 532
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Distinct events of warm and moist air intrusions (WAIs) from mid-latitudes have pronounced impacts on the Arctic climate system. We present a detailed analysis of a record-breaking WAI observed during the MOSAiC expedition in mid-April 2020. By combining Eulerian with Lagrangian frameworks and using simulations across different scales, we investigate aspects of air mass transformationsviacloud processes and quantify related surface impacts. The WAI is characterized by two distinct pathways, Siberian and Atlantic. A moist static energy transport across the Arctic Circle above the climatological 90th percentile is found. Observations at research vessel Polarstern show a transition from radiatively clear to cloudy state with significant precipitation and a positive surface energy balance (SEB), i.e., surface warming. WAI air parcels reach Polarstern first near the tropopause, and only 1–2 days later at lower altitudes. In the 5 days prior to the event, latent heat release during cloud formation triggers maximum diabatic heating rates in excess of 20 K d-1. For some poleward drifting air parcels, this facilitates strong ascent by up to 9 km. Based on model experiments, we explore the role of two key cloud-determining factors. First, we test the role moisture availability by reducing lateral moisture inflow during the WAI by 30%. This does not significantly affect the liquid water path, and therefore the SEB, in the central Arctic. The cause are counteracting mechanisms of cloud formation and precipitation along the trajectory. Second, we test the impact of increasing Cloud Condensation Nuclei concentrations from 10 to 1,000 cm-3(pristine Arctic to highly polluted), which enhances cloud water content. Resulting stronger longwave cooling at cloud top makes entrainment more efficient and deepens the atmospheric boundary layer. Finally, we show the strongly positive effect of the WAI on the SEB. This is mainly driven by turbulent heat fluxes over the ocean, but radiation over sea ice. The WAI also contributes a large fraction to precipitation in the Arctic, reaching 30% of total precipitation in a 9-day period at the MOSAiC site. However, measured precipitation varies substantially between different platforms. Therefore, estimates of total precipitation are subject to considerable observational uncertainty.

     
    more » « less
  2. This dataset contains monthly average output files from the iCAM6 simulations used in the manuscript "Enhancing understanding of the hydrological cycle via pairing of process-oriented and isotope ratio tracers," in review at the Journal of Advances in Modeling Earth Systems. A file corresponding to each of the tagged and isotopic variables used in this manuscript is included. Files are at 0.9° latitude x 1.25° longitude, and are in NetCDF format. Data from two simulations are included: 1) a simulation where the atmospheric model was "nudged" to ERA5 wind and surface pressure fields, by adding an additional tendency (see section 3.1 of associated manuscript), and 2) a simulation where the atmospheric state was allowed to freely evolve, using only boundary conditions imposed at the surface and top of atmosphere. Specific information about each of the variables provided is located in the "usage notes" section below. Associated article abstract: The hydrologic cycle couples the Earth's energy and carbon budgets through evaporation, moisture transport, and precipitation. Despite a wealth of observations and models, fundamental limitations remain in our capacity to deduce even the most basic properties of the hydrological cycle, including the spatial pattern of the residence time (RT) of water in the atmosphere and the mean distance traveled from evaporation sources to precipitation sinks. Meanwhile, geochemical tracers such as stable water isotope ratios provide a tool to probe hydrological processes, yet their interpretation remains equivocal despite several decades of use. As a result, there is a need for new mechanistic tools that link variations in water isotope ratios to underlying hydrological processes. Here we present a new suite of “process-oriented tags,” which we use to explicitly trace hydrological processes within the isotopically enabled Community Atmosphere Model, version 6 (iCAM6). Using these tags, we test the hypotheses that precipitation isotope ratios respond to parcel rainout, variations in atmospheric RT, and preserve information regarding meteorological conditions during evaporation. We present results for a historical simulation from 1980 to 2004, forced with winds from the ERA5 reanalysis. We find strong evidence that precipitation isotope ratios record information about atmospheric rainout and meteorological conditions during evaporation, but little evidence that precipitation isotope ratios vary with water vapor RT. These new tracer methods will enable more robust linkages between observations of isotope ratios in the modern hydrologic cycle or proxies of past terrestrial environments and the environmental processes underlying these observations.   Details about the simulation setup can be found in section 3 of the associated open-source manuscript, "Enhancing understanding of the hydrological cycle via pairing of process‐oriented and isotope ratio tracers." In brief, we conducted two simulations of the atmosphere from 1980-2004 using the isotope-enabled version of the Community Atmosphere Model 6 (iCAM6) at 0.9x1.25° horizontal resolution, and with 30 vertical hybrid layers spanning from the surface to ~3 hPa. In the first simulation, wind and surface pressure fields were "nudged" toward the ERA5 reanalysis dataset by adding a nudging tendency, preventing the model from diverging from observed/reanalysis wind fields. In the second simulation, no additional nudging tendency was included, and the model was allowed to evolve 'freely' with only boundary conditions provided at the top (e.g., incoming solar radiation) and bottom (e.g., observed sea surface temperatures) of the model. In addition to the isotopic variables, our simulation included a suite of 'process-oriented tracers,' which we describe in section 2 of the manuscript. These variables are meant to track a property of water associated with evaporation, condensation, or atmospheric transport. Metadata are provided about each of the files below; moreover, since the attached files are NetCDF data - this information is also provided with the data files. NetCDF metadata can be accessed using standard tools (e.g., ncdump). Each file has 4 variables: the tagged quantity, and the associated coordinate variables (time, latitude, longitude). The latter three are identical across all files, only the tagged quantity changes. Twelve files are provided for the nudged simulation, and an additional three are provided for the free simulations: Nudged simulation files iCAM6_nudged_1980-2004_mon_RHevap: Mass-weighted mean evaporation source property: RH (%) with respect to surface temperature. iCAM6_nudged_1980-2004_mon_Tevap: Mass-weighted mean evaporation source property: surface temperature in Kelvin iCAM6_nudged_1980-2004_mon_Tcond: Mass-weighted mean condensation property: temperature (K) iCAM6_nudged_1980-2004_mon_columnQ: Total (vertically integrated) precipitable water (kg/m2).  Not a tagged quantity, but necessary to calculate depletion times in section 4.3 (e.g., Fig. 11 and 12). iCAM6_nudged_1980-2004_mon_d18O: Precipitation d18O (‰ VSMOW) iCAM6_nudged_1980-2004_mon_d18Oevap_0: Mass-weighted mean evaporation source property - d18O of the evaporative flux (e.g., the 'initial' isotope ratio prior to condensation), (‰ VSMOW) iCAM6_nudged_1980-2004_mon_dxs: Precipitation deuterium excess (‰ VSMOW) - note that precipitation d2H can be calculated from this file and the precipitation d18O as d2H = d-excess - 8*d18O. iCAM6_nudged_1980-2004_mon_dexevap_0: Mass-weighted mean evaporation source property - deuterium excess of the evaporative flux iCAM6_nudged_1980-2004_mon_lnf: Integrated property - ln(f) calculated from the constant-fractionation d18O tracer (see section 3.2). iCAM6_nudged_1980-2004_mon_precip: Total precipitation rate in m/s. Note there is an error in the metadata in this file - it is total precipitation, not just convective precipitation. iCAM6_nudged_1980-2004_mon_residencetime: Mean atmospheric water residence time (in days). iCAM6_nudged_1980-2004_mon_transportdistance: Mean atmospheric water transport distance (in km). Free simulation files iCAM6_free_1980-2004_mon_d18O: Precipitation d18O (‰ VSMOW) iCAM6_free_1980-2004_mon_dxs: Precipitation deuterium excess (‰ VSMOW) - note that precipitation d2H can be calculated from this file and the precipitation d18O as d2H = d-excess - 8*d18O. iCAM6_free_1980-2004_mon_precip: Total precipitation rate in m/s. Note there is an error in the metadata in this file - it is total precipitation, not just convective precipitation. 
    more » « less
  3. Entrainment of warm, dry air from above the boundary layer into the cloud layer has a significant impact on stratocumulus clouds in the marine boundary layer. During the MAGIC field campaign, the Atmospheric Radiation Measurement (ARM) mobile facility was deployed aboard a container ship that made regular transects between Los Angeles, California and Honolulu, Hawaii. Observations made during MAGIC transects were collocated with observations from the Geostationary Operational Environmental Satellite (GOES‐15) and European Centre for Medium‐range Weather Forecasting (ECMWF) reanalysis model. From these data, hourly estimates of entrainment velocities in closed cellular stratocumulus cloud conditions were calculated from the mixed‐layer mass budget equation, modified to accommodate observations sampled from a moving platform. The technique is demonstrated using observations collected during Leg 15A (46 h) and then extended to 178 h of data. The average entrainment velocity was 7.83 ± 5.23 mm/s, and the average large‐scale vertical air motion at cloud top (obtained from reanalysis) was −2.56 ± 3.31 mm/s. The vertical air motion at cloud top was positive (upward) during 36 h (∼20%) with a mean of 2.68 mm/s. Entrainment velocity is highly variable and on average the MAGIC observations show no dependence of entrainment velocity on longitude or any pronounced diurnal cycle. When binned by inversion strength, the mean entrainment velocity and mean large‐scale vertical air motion mirrored each other, with both exhibiting substantial variability. Collectively, our results suggest a mean entrainment‐velocity behaviour associated with the background state, with large changes in entrainment velocity forced by strong variability in internal boundary‐layer properties like turbulence, radiation, and inversion strength. This cautions against using climatological mean estimates of entrainment velocities or neglecting instances with upward large‐scale vertical air motion.

     
    more » « less
  4. Abstract Numerical simulations were conducted to investigate the upstream environment’s impacts on the airflow over the lee slope of the Cuyamaca Mountains (CM) near San Diego, California, during the Cedar Fire that occurred from 25 to 29 October 2003. The upstream environment was largely controlled by a southwest–northeast-oriented upper-tropospheric jet streak that rotated around a positively tilted ridge within the polar jet stream. Three sequential dynamical processes were found to be responsible for modifying the mesoscale environment conducive to low-level momentum and dry air that sustained the Cedar Fire. First, the sinking motion associated with the indirect circulation of the jet streak’s exit region strengthened the midtropospheric flow over the southern Rockies and the lee slope of the Sawatch and San Juan Ranges, thus modestly affecting the airflow by enhancing the downslope wind over the CM. Second, consistent with the coupling process between the upper-level sinking motion, downward momentum transfer, and developing lower-layer mountain waves, a wave-induced critical level over the mountain produced wave breaking, which was characterized by a strong turbulent mixed region with a wind reversal on top of it. This critical level helped to produce severe downslope winds leading to the third stage: a hydraulic jump that subsequently enhanced the downstream extent of the strong winds conducive to the favorable lower-tropospheric environment for rapid fire spread. Consistent with these findings was the deep-layer resonance between the mountain surface and tropopause, which had a strong impact on strengthening the severe downslope winds over the lee slope of the CM accompanying the elevated strong easterly jet at low levels. 
    more » « less
  5. We propose a classification scheme for nocturnal atmospheric boundary layers and apply it to investigate the spatio‐temporal structure of air temperature and wind speed in a shallow valley during the Shallow Cold Pool Experiment. This field campaign was the first to collect spatially continuous temperature and wind information at high resolution (1 s, 0.25 m) using the distributed temperature sensing technique across a 220 m long transect at three heights (0.5, 1.0, 2.0 m). The night‐time classification scheme was motivated by a surface energy balance and used a combination of static stability, wind regime and longwave radiative forcing as quantities to determine physically meaningful boundary‐layer regimes. Out of all potential combinations of these three quantities, 14 night‐time classes contained observations, of which we selected three for detailed analysis and comparison.

    The three classes represent a transition from mechanical to radiative forcing. The first night class represents conditions with strong dynamic forcing caused by locally induced lee turbulence dominating near‐surface temperatures across the shallow valley. The second night class was a concurrence of enhanced dynamic mixing due to significant winds at the valley shoulders and cold‐air pooling at the bottom of the shallow valley as a result of strong radiative cooling. The third night class was characteristic of weak winds eliminating the impact of mechanical mixing but emphasizing the formation and pooling of cold air at the valley bottom.

    The proposed night‐time classification scheme was found to sort the experimental data into physically meaningful regimes of surface flow and transport. It is suitable to stratify short‐ and long‐term experimental data for ensemble averaging and to identify case studies.

     
    more » « less