Interface between two immiscible electrolyte solutions (ITIES) is a powerful platform for chemical sensing and studying electron/ion transfer reactions and is typically formed between the interface of two immiscible solutions such as an oil phase and an aqueous phase. Micro/nano ITIES interface are generally formed at the tip of a borosilicate/quartz pipette, inner surface of which can be rendered hydrophobic to be filled with an organic solvent by a method called silanization. Nano/micrometer-sized electrodes are typically silanized by vapor silanization methods in which silanizing agent in vapor phase is exposed to nanopipettes. Micrometer-sized pipettes have been also silanized by directly filling liquid silanization agent, one type of liquid silanization methods, but this method has not been used at the nanoscale. Liquid silanization method allows to selectively silanize a single channel in a dual-channel pipette platform. Here, we developed the liquid silanization method for nanoscale ITIES and demonstrated that a stable cyclic voltammogram for tetrabutylammonium ion transfer across water/dichloroethane interface can be accomplished. We also presented challenges for liquid silanization at the nanoscale and strategies to overcome them. The liquid silanization methods presented here lay the foundation for future development of dual channel multi-functional probe where one channel is nanoITIES.
more »
« less
Engulfment of a drop on solids coated by thin and thick fluid films
When an aqueous drop contacts an immiscible oil film, it displays complex interfacial dynamics. When the spreading factor is positive, upon contact, the oil spreads onto the drop's liquid–air interface, first forming a liquid bridge whose curvature drives an apparent drop spreading motion and later engulfs the drop. We study this flow using both three-phase lattice Boltzmann simulations based on the conservative phase field model, and experiments. Inertially and viscously limited dynamics are explored using the Ohnesorge number $Oh$ and the ratio between the film height $H$ and the initial drop radius $R$ . Both regimes show that the radial growth of the liquid bridge $r$ is fairly insensitive to the film height $H$ , and scales with time $T$ as $r\sim T^{1/2}$ for $Oh\ll 1$ , and as $r\sim T^{2/5}$ for $Oh\gg 1$ . For $Oh\gg 1$ , we show experimentally that this immiscible liquid bridge growth is analogous with the miscible drop–film coalescence case. Contrary to the growth of the liquid bridge, however, we find that the late-time engulfment dynamics and final interface profiles are significantly affected by the ratio $H/R$ .
more »
« less
- Award ID(s):
- 1743794
- PAR ID:
- 10437926
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 958
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cellular motility is a key function guiding microbial adhesion to interfaces, which is the first step in the formation of biofilms. The close association of biofilms and bioremediation has prompted extensive research aimed at comprehending the physics of microbial locomotion near interfaces. We study the dynamics and statistics of microorganisms in a ‘floating biofilm’, i.e. , a confinement with an air–liquid interface on one side and a liquid–liquid interface on the other. We use a very general mathematical model, based on a multipole representation and probabilistic simulations, to ascertain the spatial distribution of microorganisms in films of different viscosities. Our results reveal that microorganisms can be distributed symmetrically or asymmetrically across the height of the film, depending on their morphology and the ratio of the film's viscosity to that of the fluid substrate. Long-flagellated, elongated bacteria exhibit stable swimming parallel to the liquid–liquid interface when the bacterial film is less viscous than the underlying fluid. Bacteria with shorter flagella on the other hand, swim away from the liquid–liquid interface and accumulate at the free surface. We also analyze microorganism dynamics in a flowing film and show how a microorganism's ability to resist ‘flow-induced-erosion’ from interfaces is affected by its elongation and mode of propulsion. Our study generalizes past efforts on understanding microorganism dynamics under confinement by interfaces and provides key insights on biofilm initiation at liquid–liquid interfaces.more » « less
-
Abstract We study the Kardar–Parisi–Zhang (KPZ) equation on the half-line x ⩾ 0 with Neumann type boundary condition. Stationary measures of the KPZ dynamics were characterized in recent work: they depend on two parameters, the boundary parameter u of the dynamics, and the drift − v of the initial condition at infinity. We consider the fluctuations of the height field when the initial condition is given by one of these stationary processes. At large time t , it is natural to rescale parameters as ( u , v ) = t −1/3 ( a , b ) to study the critical region. In the special case a + b = 0, treated in previous works, the stationary process is simply Brownian. However, these Brownian stationary measures are particularly relevant in the bound phase ( a < 0) but not in the unbound phase. For instance, starting from the flat or droplet initial condition, the height field near the boundary converges to the stationary process with a > 0 and b = 0, which is not Brownian. For a + b ⩾ 0, we determine exactly the large time distribution F a , b stat of the height function h (0, t ). As an application, we obtain the exact covariance of the height field in a half-line at two times 1 ≪ t 1 ≪ t 2 starting from stationary initial condition, as well as estimates, when starting from droplet initial condition, in the limit t 1 / t 2 → 1.more » « less
-
null (Ed.)We study the dynamic wetting of a self-propelled viscous droplet using the time-dependent lubrication equation on a conical-shaped substrate for different cone radii, cone angles and slip lengths. The droplet velocity is found to increase with the cone angle and the slip length, but decrease with the cone radius. We show that a film is formed at the receding part of the droplet, much like the classical Landau–Levich–Derjaguin film. The film thickness $h_f$ is found to decrease with the slip length $\lambda$ . By using the approach of matching asymptotic profiles in the film region and the quasi-static droplet, we obtain the same film thickness as the results from the lubrication approach for all slip lengths. We identify two scaling laws for the asymptotic regimes: $h_fh''_o \sim Ca^{2/3}$ for $\lambda \ll h_f$ and $h_f h''^{3}_o\sim (Ca/\lambda )^2$ for $\lambda \gg h_f$ ; here, $1/h''_o$ is a characteristic length at the receding contact line and $Ca$ is the capillary number. We compare the position and the shape of the droplet predicted from our continuum theory with molecular dynamics simulations, which are in close agreement. Our results show that manipulating the droplet size, the cone angle and the slip length provides different schemes for guiding droplet motion and coating the substrate with a film.more » « less
-
Low-cost and scalable superhydrophobic coating methods provide viable approaches for energy-efficient separation of immiscible liquid/liquid mixtures. A scalable photopolymerization method is developed to functionalize porous substrates with a hybrid coating of tetrapodal ZnO (T-ZnO) and polymethacrylate, which exhibits simultaneous superhydrophobicity and superoleophilicity. Here, T-ZnO serves dual purposes by (i) initiating radical photopolymerization during the fabrication process through a hole-mediated pathway and (ii) providing a hierarchical surface roughness to amplify wettability characteristics and suspend liquid droplets in the metastable Cassie—Baxter regime. Photopolymerization provides a means to finely control the conversion and spatial distribution of the formed polymer, whilst allowing for facile large-area fabrication and potential coating on heat-sensitive substrates. Coated stainless-steel meshes and filter papers with desired superhydrophobic/superoleophilic properties exhibit excellent performance in separating stratified oil/water, oil/ionic-liquid, and water/ionic-liquid mixtures as well as water-in-oil emulsions. The hybrid coating demonstrates desired mechanical robustness and chemical resistance for their long-term application in large-scale energy-efficient separation of immiscible liquid/liquid mixtures.more » « less