skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Film deposition and dynamics of a self-propelled wetting droplet on a conical fibre
We study the dynamic wetting of a self-propelled viscous droplet using the time-dependent lubrication equation on a conical-shaped substrate for different cone radii, cone angles and slip lengths. The droplet velocity is found to increase with the cone angle and the slip length, but decrease with the cone radius. We show that a film is formed at the receding part of the droplet, much like the classical Landau–Levich–Derjaguin film. The film thickness $$h_f$$ is found to decrease with the slip length $$\lambda$$ . By using the approach of matching asymptotic profiles in the film region and the quasi-static droplet, we obtain the same film thickness as the results from the lubrication approach for all slip lengths. We identify two scaling laws for the asymptotic regimes: $$h_fh''_o \sim Ca^{2/3}$$ for $$\lambda \ll h_f$$ and $$h_f h''^{3}_o\sim (Ca/\lambda )^2$$ for $$\lambda \gg h_f$$ ; here, $$1/h''_o$$ is a characteristic length at the receding contact line and $Ca$ is the capillary number. We compare the position and the shape of the droplet predicted from our continuum theory with molecular dynamics simulations, which are in close agreement. Our results show that manipulating the droplet size, the cone angle and the slip length provides different schemes for guiding droplet motion and coating the substrate with a film.  more » « less
Award ID(s):
1743794
PAR ID:
10284910
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
907
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Depinning of liquid droplets on substrates by flow of a surrounding immiscible fluid is central to applications such as cross-flow microemulsification, oil recovery and waste cleanup. Surface roughness, either natural or engineered, can cause droplet pinning, so it is of both fundamental and practical interest to determine the flow strength of the surrounding fluid required for droplet depinning on rough substrates. Here, we develop a lubrication-theory-based model for droplet depinning on a substrate with topographical defects by flow of a surrounding immiscible fluid. The droplet and surrounding fluid are in a rectangular channel, a pressure gradient is imposed to drive flow and the defects are modelled as Gaussian-shaped bumps. Using a precursor-film/disjoining-pressure approach to capture contact-line motion, a nonlinear evolution equation is derived describing the droplet thickness as a function of distance along the channel and time. Numerical solutions of the evolution equation are used to investigate how the critical pressure gradient for droplet depinning depends on the viscosity ratio, surface wettability and droplet volume. Simple analytical models are able to account for many of the features observed in the numerical simulations. The influence of defect height is also investigated, and it is found that, when the maximum defect slope is larger than the receding contact angle of the droplet, smaller residual droplets are left behind at the defect after the original droplet depins and slides away. The model presented here yields considerably more information than commonly used models based on simple force balances, and provides a framework that can readily be extended to study more complicated situations involving chemical heterogeneity and three-dimensional effects. 
    more » « less
  2. Abstract This work focuses on the nature of magnetic anisotropy in 2.5–16 micron thick films of nickel ferrite (NFO) grown by liquid phase epitaxy (LPE). The technique, ideal for rapid growth of epitaxial oxide films, was utilized for films on (100) and (110) substrates of magnesium gallate (MGO). The motivation was to investigate the dependence of the growth induced anisotropy field on film thickness since submicron films of NFO were reported to show a very high anisotropy. The films grown at 850–875 C and subsequently annealed at 1000 C were found to be epitaxial, with the out-of-plane lattice constant showing unanticipated decrease with increasing film thickness and the estimated in-plane lattice constant increasing with the film thickness. The uniaxial anisotropy field H σ , estimated from X-ray diffraction data, ranged from 2.8–7.7 kOe with the films on (100) MGO having a higher H σ value than for the films on (110) MGO. Ferromagnetic resonance (FMR) measurements for in-plane and out-of-plane static magnetic field were utilized to determine both the magnetocrystalline the anisotropy field H 4 and the uniaxial anisotropy field H a . Values of H 4 range from −0.24 to −0.86 kOe. The uniaxial anisotropy field H a was an order of magnitude smaller than H σ and it decreased with increasing film thickness for NFO films on (100) MGO, but H a increased with film thickness for films on (110) MGO substrates. These observations indicate that the origin of the induced anisotropy could be attributed to several factors including (i) strain due to mismatch in the film-substrate lattice constants, (ii) possible variations in the bond lengths and bond angles in NFO during the growth process, and (iii) the strain arising from mismatch in the thermal expansion coefficients of the film and the substrate due to the high growth and annealing temperatures involved in the LPE technique. The LPE films of NFO on MGO substrates studied in this work are of interest for use in high frequency devices. 
    more » « less
  3. Droplet impacts on solid surfaces produce a wide variety of phenomena such as spreading, splashing, jetting, receding, and rebounding. In microholed surfaces, downward jets through the hole can be caused by the high impact inertia during the spreading phase of the droplet over the substrate as well as the cavity collapse during recoil phase of the droplet. We investigate the dynamics of the jet formed through the single hole during the impacting phase of the droplet on a micro-holed hydrophilic substrate. The sub-millimeter circular holes are created on the 0.2 mm-thickness hydrophilic plastic films using a 0.5 mm punch. Great care has been taken to ensure that the millimeter-sized droplets of water dispensed by a syringe pump through a micropipette tip can impact directly over the micro-holes. A high-speed video photography camera is employed to capture the full event of impacting and jetting. A MATLAB code has been developed to process the captured videos for data analysis. We study the effect of impact velocity on the jet formation including jet velocity, ejected droplet volume, and breakup process. We find that the Weber number significantly affects outcomes of the drop impact and jetting mechanism. We also examine the dynamic contact angle of the contact line during the spreading and the receding phase. 
    more » « less
  4. Films formed by dip coating brass wires with dilute and semi-dilute solutions of polyvinyl butyral in benzyl alcohol were studied in their liquid and solid states. While dilute and semi-dilute solutions behaved as Maxwell viscoelastic fluids, the thickness of the liquid films followed the Landau-Levich-Derjaguin prediction for Newtonian fluids. At a very slow rate of coating, the film thickness was difficult to evaluate. Therefore, the dynamic contact angle was studied in detail. We discovered that polymer additives preserve the advancing contact angle at its static value while the receding contact angle follows the Cox–Voinov theory. In contrast, the thickness of solid films does not correlate with the Landau-Levich-Derjaguin predictions. Only solutions of high-molecular-weight polymers form smooth solid films. Solutions of low-molecular-weight polymers may form either solid films with an inhomogeneous roughness or solid polymer domains separated by the dry substrate. In technological applications, very dilute polymer solutions of high-molecular-weight polymers can be used to avoid inhomogeneities in solid films. These solutions form smooth solid films, and the film thickness can be controlled by the experimental coating conditions. 
    more » « less
  5. We study the coupling between rotation and translation of a submerged cylinder in lubricated contact with a soft elastic substrate. Using numerical solutions and asymptotic theory, we analyze the elastohydrodynamic problem over the entire range of substrate deformations relative to the thickness of the intervening fluid film. We find a strong coupling between the rotation and translation of the cylinder when the surface deformation of the substrate is comparable to the thickness of the lubricating fluid layer. In the limit of large deformations, we show that the bodies are in near-Hertzian contact and cylinder rolls without slip, reminiscent of dry frictional contact. When the surface deformation is small relative to the separation between the surfaces, the coupling persists but is weaker, and the rotation rate scales with the translation speed to the one-third power. We then show how the external application of a torque modifies these behaviors by generating different combinations of rotational and translational motions, including back-spinning and top-spinning states. We demonstrate that these behaviors are robust regardless of whether the elastic substrate is thick or thin relative to the length scales of the flow. 
    more » « less