Novel transmission schemes, enabled by recent advances in the fields of metamaterial (MTM), leaky-wave antenna (LWA) and directional modulation, are proposed for enhancing the physical layer (PHY) security. MTM-LWAs, which offer compact, integrated, and cost-effective alternatives to the classic phased-array architectures, are particularly of interest for emerging wireless communication systems including Internet-of-Things (IoT). The proposed secure schemes are devised to accomplish the functionalities of directional modulation (DM) transmitters for orthogonal frequency-division multiplexing (OFDM) and non-contiguous (NC) OFDM transmissions, while enjoying the implementation benefits of MTM-LWAs. Specifically, transmitter architectures based on the idea of time-modulated MTM-LWA have been put forth as a promising solution for PHY security for the first time. The PHY security for the proposed schemes are investigated from the point of view of both passive and active attacks where an adversary aims to decode secret information and feed spurious data to the legitimate receiver, respectively. Numerical simulations reveal that even when the adversary employs sophisticated state-of-the-art deep learning based attacks, the proposed transmission schemes are resistant to these attacks and reliably guarantee system security.
more »
« less
Programming Wireless Security Through Learning‐Aided Spatiotemporal Digital Coding Metamaterial Antenna
The advancement of future large‐scale wireless networks necessitates the development of cost‐effective and scalable security solutions. Specifically, physical layer (PHY) security has been put forth as a cost‐effective alternative to cryptographic mechanisms that can circumvent the need for explicit key exchange between communication devices. Herein, a space–time‐modulated digitally‐coded metamaterial (MTM) leaky wave antenna (LWA) is proposed that can enable PHY security by achieving the functionalities of directional modulation (DM) using a machine learning‐aided branch‐and‐bound (B&B) optimized coding sequence. Theoretically, it is first shown that the proposed space–time MTM antenna can achieve DM through both the spatial and spectral manipulation of the orthogonal frequency division multiplexing signal. Simulation results are then provided as proof‐of‐principle, demonstrating the applicability of the approach for achieving DM in various communication settings. Furthermore, a prototype of the proposed architecture controlled by a field‐programmable gate array is realized, which achieves DM via an optimized coding sequence carried out by the learning‐aided B&B algorithm corresponding to the states of the MTM LWA's unit cells. Experimental results confirm the theory behind the space–time‐modulated MTM LWA in achieving DM, which is observed via both the spectral harmonic patterns and bit error rate measurements.
more »
« less
- PAR ID:
- 10438009
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Intelligent Systems
- Volume:
- 5
- Issue:
- 10
- ISSN:
- 2640-4567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent advancement in digital coding metasurfaces incorporating spatial and temporal modulation has enabled simultaneous control of electromagnetic (EM) waves in both space and frequency domains by manipulating incident EM waves in a transmissive or reflective fashion, resulting in time-reversal asymmetry. Here we show in theory and experiment that a digitally space-time-coded metamaterial (MTM) antenna with spatiotemporal modulation at its unit cell level can be regarded as a radiating counterpart of such digital metasurface, which will enable nonreciprocal EM wave transmission and reception via surface-to-leaky-wave transformation and harmonic frequency generation. Operating in the fast wave (radiation) region, the space-time-coded MTM antenna is tailored in a way such that the propagation constant of each programmable unit cell embedded with varactor diodes can toggle between positive and negative phases, which is done through providing digital sequences by using a field-programmable gate array (FPGA). Owing to the time-varying coding sequence, harmonic frequencies are generated with different main beam directions. Furthermore, the space time modulation of the digitally coded MTM antenna allows for nonreciprocal transmission and reception of EM waves by breaking the time-reversal symmetry, which may enable many applications, such as simultaneous transmitting and receiving, unidirectional transmission, radar sensing, and multiple-input and multiple-output (MIMO) beamformer.more » « less
-
This paper applies probabilistic amplitude shaping (PAS) to cyclic redundancy check (CRC)-aided tail-biting trellis-coded modulation (TCM). CRC-TCM-PAS produces practical codes for short block lengths on the additive white Gaussian noise (AWGN) channel. In the transmitter, equally likely message bits are encoded by a distribution matcher (DM) generating amplitude symbols with a desired distribution. A CRC is appended to the sequence of amplitude symbols, and this sequence is then encoded and modulated by TCM to produce real-valued channel input signals. This paper proves that the sign values produced by the TCM are asymptotically equally likely to be positive or negative. The CRC-TCM-PAS scheme can thus generate channel input symbols with a symmetric capacity-approaching probability mass function. The paper provides an analytical upper bound on the frame error rate of the CRC-TCM-PAS system over the AWGN channel. This FER upper bound is the objective function used for jointly optimizing the CRC and convolutional code. Additionally, this paper proposes a multi-composition DM, which is a collection of multiple constant-composition DMs. The optimized CRC-TCM-PAS systems achieve frame error rates below the random coding union (RCU) bound in AWGN and outperform the short-blocklength PAS systems with various other forward error correction codes studied in [2].more » « less
-
We present a novel low-complexity scheme for cache-aided communication, where a multi-antenna base station serves multiple single-antenna mobile users. The scheme is based on dividing the users into meta-users, where all users in the same meta-user store the same content during the placement phase. The inter meta-user interference is mitigated by using the cache as well as zero forcing, while the interference between users of the same meta-user is mitigated by zero forcing. Compared to the current state of the art, this scheme is feasible for a wider range of parameters. Moreover, while still achieving the optimal number of degrees of freedom (DoF), the proposed scheme imposes the same or less complexity compared to all the known schemes for each set of parameters. Consequently, the proposed scheme enables practical implementation of cache-aided communication for a large number of users.more » « less
-
Obfuscation of the orthogonal frequency-division multiplexing (OFDM) physical layer is described in this paper as a means to enhance the security of wireless communication. The standardization of the communication channel between two trusted parties results in a variety of security threats, including vulnerabilities in WPA/WPA2 protocols that allow for the extraction of the software layer encryption key. Obfuscating the physical layer of the OFDM pipeline provides an additional layer of security in the event that the software layer key is compromised and allows for rolling updates of the physical layer key without altering the software layer key. The interleaver stage of the OFDM pipeline is redesigned to utilize a physical layer key, which is termed Phy-Leave. The Phy-Leave interleaver is evaluated through both MATLAB simulation and hardware prototyping on the Software Defined Communication (SDC) testbed using a Virtex6 FPGA. The implemented rolling physical layer key policy and Phy-Leave system resulted in a less than 1% increase in the area of a Virtex6 FPGA, demonstrating physical layer obfuscation as a means to increase the security of wireless communication without a significant cost in hardware.more » « less
An official website of the United States government
