skip to main content


Title: Necessary and sufficient conditions for exact closures of epidemic equations on configuration model networks
Abstract

We prove that it is possible to obtain the exact closure of SIR pairwise epidemic equations on a configuration model network if and only if the degree distribution follows a Poisson, binomial, or negative binomial distribution. The proof relies on establishing the equivalence, for these specific degree distributions, between the closed pairwise model and a dynamical survival analysis (DSA) model that was previously shown to be exact. Specifically, we demonstrate that the DSA model is equivalent to the well-known edge-based Volz model. Using this result, we also provide reductions of the closed pairwise and Volz models to a single equation that involves only susceptibles. This equation has a useful statistical interpretation in terms of times to infection. We provide some numerical examples to illustrate our results.

 
more » « less
Award ID(s):
1853587
NSF-PAR ID:
10438024
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Mathematical Biology
Volume:
87
Issue:
2
ISSN:
0303-6812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The $p$-tensor Ising model is a one-parameter discrete exponential family for modeling dependent binary data, where the sufficient statistic is a multi-linear form of degree $p \geqslant 2$. This is a natural generalization of the matrix Ising model that provides a convenient mathematical framework for capturing, not just pairwise, but higher-order dependencies in complex relational data. In this paper, we consider the problem of estimating the natural parameter of the $p$-tensor Ising model given a single sample from the distribution on $N$ nodes. Our estimate is based on the maximum pseudolikelihood (MPL) method, which provides a computationally efficient algorithm for estimating the parameter that avoids computing the intractable partition function. We derive general conditions under which the MPL estimate is $\sqrt N$-consistent, that is, it converges to the true parameter at rate $1/\sqrt N$. Our conditions are robust enough to handle a variety of commonly used tensor Ising models, including spin glass models with random interactions and models where the rate of estimation undergoes a phase transition. In particular, this includes results on $\sqrt N$-consistency of the MPL estimate in the well-known $p$-spin Sherrington–Kirkpatrick model, spin systems on general $p$-uniform hypergraphs and Ising models on the hypergraph stochastic block model (HSBM). In fact, for the HSBM we pin down the exact location of the phase transition threshold, which is determined by the positivity of a certain mean-field variational problem, such that above this threshold the MPL estimate is $\sqrt N$-consistent, whereas below the threshold no estimator is consistent. Finally, we derive the precise fluctuations of the MPL estimate in the special case of the $p$-tensor Curie–Weiss model, which is the Ising model on the complete $p$-uniform hypergraph. An interesting consequence of our results is that the MPL estimate in the Curie–Weiss model saturates the Cramer–Rao lower bound at all points above the estimation threshold, that is, the MPL estimate incurs no loss in asymptotic statistical efficiency in the estimability regime, even though it is obtained by minimizing only an approximation of the true likelihood function for computational tractability. 
    more » « less
  2. Abstract

    Ring‐shaped nanostructures can focus, filter, and manipulate electromagnetic waves, but are challenging to incorporate into devices using standard nanofabrication techniques. Directed self‐assembly (DSA) of block copolymers (BCPs) on lithographically patterned templates has successfully been used to fabricate concentric rings and spirals as etching masks. However, this method is limited by BCP phase behavior and material selection. Here, a straightforward approach to generate ring‐shaped nanoparticle assemblies in thin films of supramolecular nanocomposites is demonstrated. DSA is used to guide the formation of concentric rings with radii spanning 150–1150 nm and ring widths spanning 30–60 nm. When plasmonic nanoparticles are used, ring nanodevice arrays can be fabricated in one step, and the completed devices produce high‐quality orbital angular momentum (OAM). Nanocomposite DSA simplifies and streamlines nanofabrication by producing metal structures without etching or deposition steps; it also introduces interparticle coupling as a new design axis. Detailed analysis of the nanoparticle ring assemblies confirms that the supramolecular system self‐regulates the spatial distribution of its components, and thus exhibits a degree of flexibility absent in DSA of BCPs alone, where structures are determined by polymer‐pattern incommensurability. The present studies also provide guidelines for developing self‐regulating DSA as an alternative to incommensurability‐driven methods.

     
    more » « less
  3. null (Ed.)
    Spatial patterns in ecology contain useful information about underlying mechanisms and processes. Although there are many summary statistics used to quantify these spatial patterns, there are far fewer models that directly link explicit ecological mechanisms to observed patterns easily derived from available data. We present a model of intraspecific spatial aggregation that quantitatively relates static spatial patterning to negative density dependence. Individuals are placed according to the colonization rule consistent with the Maximum Entropy Theory of Ecology (METE), and die with probability proportional to their abundance raised to a power α, a parameter indicating the degree of density dependence. This model can therefore be interpreted as a hybridization of MaxEnt and mechanism. Our model shows quantitatively and generally that increasing density dependence randomizes spatial patterning. α = 1 recovers the strongly aggregated METE distribution that is consistent with many ecosystems empirically, and as α → 2 our prediction approaches the binomial distribution consistent with random placement. For 1 < α < 2, our model predicts more aggregation than random placement but less than METE. We additionally relate our mechanistic parameter α to the statistical aggregation parameter k in the negative binomial distribution, giving it an ecological interpretation in the context of density dependence. We use our model to analyze two contrasting datasets, a 50 ha tropical forest and a 64 m 2 serpentine grassland plot. For each dataset, we infer α for individual species as well as a community α parameter. We find that α is generally larger in the tightly packed forest than the sparse grassland, and the degree of density dependence increases at smaller scales. These results are consistent with current understanding in both ecosystems, and we infer this underlying density dependence using only empirical spatial patterns. Our model can easily be applied to other datasets where spatially explicit data are available. 
    more » « less
  4. Abstract

    Preferential attachment, homophily, and their consequences such as scale-free (i.e. power-law) degree distributions, the glass ceiling effect (the unseen, yet unbreakable barrier that keeps minorities and women from rising to the upper rungs of the corporate ladder, regardless of their qualifications or achievements) and perception bias are well-studied in undirected networks. However, such consequences and the factors that lead to their emergence in directed networks (e.g. author–citation graphs, Twitter) are yet to be coherently explained in an intuitive, theoretically tractable manner using a single dynamical model. To this end, we present a theoretical and numerical analysis of the novel Directed Mixed Preferential Attachment model in order to explain the emergence of scale-free degree distributions and the glass ceiling effect in directed networks with two groups (minority and majority). Specifically, we first derive closed-form expressions for the power-law exponents of the in-degree and out-degree distributions of each of the two groups and then compare the derived exponents with each other to obtain useful insights. These insights include answers to questions such as: when does the minority group have an out-degree (or in-degree) distribution with a heavier tail compared to the majority group? what factors cause the tail of the out-degree distribution of a group to be heavier than the tail of its own in-degree distribution? what effect does frequent addition of edges between existing nodes have on the in-degree and out-degree distributions of the majority and minority groups? Answers to these questions shed light on the interplay between structure (i.e. the in-degree and out-degree distributions of the two groups) and dynamics (characterized collectively by the homophily, preferential attachment, group sizes and growth dynamics) of various real-world directed networks. We also provide a novel definition of the glass ceiling faced by a group via the number of individuals with large out-degree (i.e. those with many followers) normalized by the number of individuals with large in-degree (i.e. those who follow many others) and then use it to characterize the conditions that cause the glass ceiling effect to emerge in a directed network. Our analytical results are supported by detailed numerical experiments. The DMPA model and its theoretical and numerical analysis provided in this article are useful for analysing various phenomena on directed networks in fields such as network science and computational social science.

     
    more » « less
  5. Abstract

    From a unified vision of vector valued solutions in weighted Banach spaces, this paper establishes the existence and uniqueness for space homogeneous Boltzmann bi-linear systems with conservative collisional forms arising in complex gas dynamical structures. This broader vision is directly applied to dilute multi-component gas mixtures composed of both monatomic and polyatomic gases. Such models can be viewed as extensions of scalar Boltzmann binary elastic flows, as much as monatomic gas mixtures with disparate masses and single polyatomic gases, providing a unified approach for vector valued solutions in weighted Banach spaces. Novel aspects of this work include developing the extension of a general ODE theory in vector valued weighted Banach spaces, precise lower bounds for the collision frequency in terms of the weighted Banach norm, energy identities, angular or compact manifold averaging lemmas which provide coerciveness resulting into global in time stability, a new combinatorics estimate forp-binomial forms producing sharper estimates for thek-moments of bi-linear collisional forms. These techniques enable the Cauchy problem improvement that resolves the model with initial data corresponding to strictly positive and bounded initial vector valued mass and total energy, in addition to only a$$2^+$$2+moment determined by the hard potential rates discrepancy, a result comparable in generality to the classical Cauchy theory of the scalar homogeneous Boltzmann equation.

     
    more » « less