skip to main content


Title: Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone
Vision-language (VL) pre-training has recently received considerable attention. However, most existing end-to-end pre-training approaches either only aim to tackle VL tasks such as image-text retrieval, visual question answering (VQA) and image captioning that test high-level understanding of images, or only target region-level understanding for tasks such as phrase grounding and object detection. We present FIBER (Fusion-In-the-Backbone-based transformER), a new VL model architecture that can seamlessly handle both these types of tasks. Instead of having dedicated transformer layers for fusion after the uni-modal backbones, FIBER pushes multimodal fusion deep into the model by inserting cross-attention into the image and text backbones to better capture multimodal interactions. In addition, unlike previous work that is either only pre-trained on image-text data or on fine-grained data with box-level annotations, we present a two-stage pre-training strategy that uses both these kinds of data efficiently: (i) coarse-grained pre-training based on image-text data; followed by (ii) fine-grained pre-training based on image-text-box data. We conduct comprehensive experiments on a wide range of VL tasks, ranging from VQA, image captioning, and retrieval, to phrase grounding, referring expression comprehension, and object detection. Using deep multimodal fusion coupled with the two-stage pre-training, FIBER provides consistent performance improvements over strong baselines across all tasks, often outperforming methods using magnitudes more data. Code is released at https://github.com/microsoft/FIBER.  more » « less
Award ID(s):
1922658
NSF-PAR ID:
10438112
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
NeurIPS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Object proposal generation serves as a standard pre-processing step in Vision-Language (VL) tasks (image captioning, visual question answering, etc.). The performance of object proposals generated for VL tasks is currently evaluated across all available annotations, a protocol that we show is misaligned - higher scores do not necessarily correspond to improved performance on downstream VL tasks. Our work serves as a study of this phenomenon and explores the effectiveness of semantic grounding to mitigate its effects. To this end, we propose evaluating object proposals against only a subset of available annotations, selected by thresholding an annotation importance score. Importance of object annotations to VL tasks is quantified by extracting relevant semantic information from text describing the image. We show that our method is consistent and demonstrates greatly improved alignment with annotations selected by image captioning metrics and human annotation when compared against existing techniques. Lastly, we compare current detectors used in the Scene Graph Generation (SGG) benchmark as a use case, which serves as an example of when traditional object proposal evaluation techniques are misaligned. 
    more » « less
  2. null (Ed.)
    Interest in physical therapy and individual exercises such as yoga/dance has increased alongside the well-being trend, and people globally enjoy such exercises at home/office via video streaming platforms. However, such exercises are hard to follow without expert guidance. Even if experts can help, it is almost impossible to give personalized feedback to every trainee remotely. Thus, automated pose correction systems are required more than ever, and we introduce a new captioning dataset named FixMyPose to address this need. We collect natural language descriptions of correcting a “current” pose to look like a “target” pose. To support a multilingual setup, we collect descriptions in both English and Hindi. The collected descriptions have interesting linguistic properties such as egocentric relations to the environment objects, analogous references, etc., requiring an understanding of spatial relations and commonsense knowledge about postures. Further, to avoid ML biases, we maintain a balance across characters with diverse demographics, who perform a variety of movements in several interior environments (e.g., homes, offices). From our FixMyPose dataset, we introduce two tasks: the pose-correctional-captioning task and its reverse, the target-pose-retrieval task. During the correctional-captioning task, models must generate the descriptions of how to move from the current to the target pose image, whereas in the retrieval task, models should select the correct target pose given the initial pose and the correctional description. We present strong cross-attention baseline models (uni/multimodal, RL, multilingual) and also show that our baselines are competitive with other models when evaluated on other image-difference datasets. We also propose new task-specific metrics (object-match, body-part-match, direction-match) and conduct human evaluation for more reliable evaluation, and we demonstrate a large human-model performance gap suggesting room for promising future work. Finally, to verify the sim-to-real transfer of our FixMyPose dataset, we collect a set of real images and show promising performance on these images. Data and code are available: https://fixmypose-unc.github.io. 
    more » « less
  3. null (Ed.)
    Identifying and understanding quality phrases from context is a fundamental task in text mining. The most challenging part of this task arguably lies in uncommon, emerging, and domain-specific phrases. The infrequent nature of these phrases significantly hurts the performance of phrase mining methods that rely on sufficient phrase occurrences in the input corpus. Context-aware tagging models, though not restricted by frequency, heavily rely on domain experts for either massive sentence-level gold labels or handcrafted gazetteers. In this work, we propose UCPhrase, a novel unsupervised context-aware quality phrase tagger. Specifically, we induce high-quality phrase spans as silver labels from consistently co-occurring word sequences within each document. Compared with typical context-agnostic distant supervision based on existing knowledge bases (KBs), our silver labels root deeply in the input domain and context, thus having unique advantages in preserving contextual completeness and capturing emerging, out-of-KB phrases. Training a conventional neural tagger based on silver labels usually faces the risk of overfitting phrase surface names. Alternatively, we observe that the contextualized attention maps generated from a Transformer-based neural language model effectively reveal the connections between words in a surface-agnostic way. Therefore, we pair such attention maps with the silver labels to train a lightweight span prediction model, which can be applied to new input to recognize (unseen) quality phrases regardless of their surface names or frequency. Thorough experiments on various tasks and datasets, including corpus-level phrase ranking, document-level keyphrase extraction, and sentence-level phrase tagging, demonstrate the superiority of our design over state-of-the-art pre-trained, unsupervised, and distantly supervised methods. 
    more » « less
  4. We investigate knowledge retrieval with multi-modal queries, i.e. queries containing information split across image and text inputs, a challenging task that differs from previous work on cross-modal retrieval. We curate a new dataset called ReMuQ for benchmarking progress on this task. ReMuQ requires a system to retrieve knowledge from a large corpus by integrating contents from both text and image queries. We introduce a retriever model “ReViz” that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion without being dependent on intermediate modules such as object detectors or caption generators. We introduce a new pretraining task that is effective for learning knowledge retrieval with multimodal queries and also improves performance on downstream tasks. We demonstrate superior performance in retrieval on two datasets (ReMuQ and OK-VQA) under zero-shot settings as well as further improvements when finetuned on these datasets. 
    more » « less
  5. People are able to describe images using thousands of languages, but languages share only one visual world. The aim of this work is to use the learned intermediate visual representations from a deep convolutional neural network to transfer information across languages for which paired data is not available in any form. Our work proposes using backpropagation-based decoding coupled with transformer-based multilingual-multimodal language models in order to obtain translations between any languages used during training. We particularly show the capabilities of this approach in the translation of German-Japanese and Japanese-German sentence pairs, given a training data of images freely associated with text in English, German, and Japanese but for which no single image contains annotations in both Japanese and German. Moreover, we demonstrate that our approach is also generally useful in the multilingual image captioning task when sentences in a second language are available at test time. The results of our method also compare favorably in the Multi30k dataset against recently proposed methods that are also aiming to leverage images as an intermediate source of translations. 
    more » « less