In this paper, we derive norm-based generalization bounds for sparse ReLU neural networks, including convolutional neural networks. These bounds differ from previous ones because they consider the sparse structure of the neural network architecture and the norms of the convolutional filters, rather than the norms of the (Toeplitz) matrices associated with the convolutional layers. Theoretically, we demonstrate that these bounds are significantly tighter than standard norm-based generalization bounds. Empirically, they offer relatively tight estimations of generalization for various simple classification problems. Collectively, these findings suggest that the sparsity of the underlying target function and the model’s architecture plays a crucial role in the success of deep learning. 
                        more » 
                        « less   
                    
                            
                            PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization
                        
                    
    
            While there has been progress in developing non-vacuous generalization bounds for deep neural networks, these bounds tend to be uninformative about why deep learning works. In this paper, we develop a compression approach based on quantizing neural network parameters in a linear subspace, profoundly improving on previous results to provide state-of-the-art generalization bounds on a variety of tasks, including transfer learning. We use these tight bounds to better understand the role of model size, equivariance, and the implicit biases of optimization, for generalization in deep learning. Notably, we find large models can be compressed to a much greater extent than previously known, encapsulating Occam’s razor. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1922658
- PAR ID:
- 10438118
- Date Published:
- Journal Name:
- NeurIPS
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In this paper, we investigate the Rademacher complexity of deep sparse neural networks, where each neuron receives a small number of inputs. We prove generalization bounds for multilayered sparse ReLU neural networks, including convolutional neural networks. These bounds differ from previous ones, as they consider the norms of the convolutional filters instead of the norms of the associated Toeplitz matrices, independently of weight sharing between neurons. As we show theoretically, these bounds may be orders of magnitude better than standard norm-based generalization bounds and empirically, they are almost non-vacuous in estimating generalization in various simple classification problems. Taken together, these results suggest that compositional sparsity of the underlying target function is critical to the success of deep neural networks.more » « less
- 
            While previous optimization results have suggested that deep neural networks tend to favour low-rank weight matrices, the implications of this inductive bias on generalization bounds remain underexplored. In this paper, we apply a chain rule for Gaussian complexity (Maurer, 2016a) to analyze how low-rank layers in deep networks can prevent the accumulation of rank and dimensionality factors that typically multiply across layers. This approach yields generalization bounds for rank and spectral norm constrained networks. We compare our results to prior generalization bounds for deep networks, highlighting how deep networks with low-rank layers can achieve better generalization than those with full-rank layers. Additionally, we discuss how this framework provides new perspectives on the generalization capabilities of deep networks exhibiting neural collapse. Keywords: Gaussian complexity, Generalization bounds, Neural collapse, Low rank layersmore » « less
- 
            Deep neural networks are often seen as different from other model classes by defying conventional notions of generalization. Popular examples of anomalous generalization behaviour include benign overfitting, double descent, and the success of overparametrization. We argue that these phenomena are not distinct to neural networks, or particularly mysterious. Moreover, this generalization behaviour can be intuitively understood, and rigorously characterized using long-standing generalization frameworks such as PAC-Bayes and countable hypothesis bounds. We present soft inductive biases as a key unifying principle in explaining these phenomena: rather than restricting the hypothesis space to avoid overfitting, embrace a flexible hypothesis space, with a soft preference for simpler solutions that are consistent with the data. This principle can be encoded in many model classes, and thus deep learning is not as mysterious or different from other model classes as it might seem. However, we also highlight how deep learning is relatively distinct in other ways, such as its ability for representation learning, phenomena such as mode connectivity, and its relative universality.more » « less
- 
            Understanding the generalization of deep neural networks is one of the most important tasks in deep learning. Although much progress has been made, theoretical error bounds still often behave disparately from empirical observations. In this work, we develop margin-based generalization bounds, where the margins are normalized with optimal transport costs between independent random subsets sampled from the training distribution. In particular, the optimal transport cost can be interpreted as a generalization of variance which captures the structural properties of the learned feature space. Our bounds robustly predict the generalization error, given training data and network parameters, on large scale datasets. Theoretically, we demonstrate that the concentration and separation of features play crucial roles in generalization, supporting empirical results in the literature. The code is available at https://github.com/chingyaoc/kV-Margin.more » « less
 An official website of the United States government
An official website of the United States government 
				
			
 
                                    