skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simultaneous multislice EPI prospective motion correction by real‐time receiver phase correction and coil sensitivity map interpolation
Purpose: To improve the image reconstruction for prospective motion correction (PMC) of simultaneous multislice (SMS) EPI of the brain, an update of receiver phase and resampling of coil sensitivities are proposed and evaluated. Methods: A camera-based system was used to track head motion (3 translations and 3 rotations) and dynamically update the scan position and orientation. We derived the change in receiver phase associated with a shifted field of view (FOV) and applied it in real-time to each k-space line of the EPI readout trains. Second, for the SMS reconstruction, we adapted resampled coil sensitivity profiles reflecting the movement of slices. Single-shot gradient-echo SMS-EPI scans were performed in phantoms and human subjects for validation. Results: Brain SMS-EPI scans in the presence of motion withPMCand no phase correction for scan plane shift showed noticeable artifacts. These artifacts were visually and quantitatively attenuated when corrections were enabled. Correcting misaligned coil sensitivity maps improved the temporal SNR (tSNR) of time series by 24% (p=0.0007) for scans with large movements (up to ∼35mm and 30◦). Correcting the receiver phase improved the tSNR of a scan with minimal head movement by 50% from 50 to 75 for a United Kingdom biobank protocol. Conclusion: Reconstruction-induced motion artifacts in single-shot SMS-EPI scans acquired with PMC can be removed by dynamically adjusting the receiver phase of each line across EPI readout trains and updating coil sensitivity profiles during reconstruction. The method may be a valuable tool for SMS-EPI scans in the presence of subject motion.  more » « less
Award ID(s):
2108900
PAR ID:
10438169
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Magnetic Resonance in Medicine
ISSN:
0740-3194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PurposeThe aim of this work is to develop a method to solve the ill‐posed inverse problem of accelerated image reconstruction while correcting forward model imperfections in the context of subject motion during MRI examinations. MethodsThe proposed solution uses a Bayesian framework based on deep generative diffusion models to jointly estimate a motion‐free image and rigid motion estimates from subsampled and motion‐corrupt two‐dimensional (2D) k‐space data. ResultsWe demonstrate the ability to reconstruct motion‐free images from accelerated two‐dimensional (2D) Cartesian and non‐Cartesian scans without any external reference signal. We show that our method improves over existing correction techniques on both simulated and prospectively accelerated data. ConclusionWe propose a flexible framework for retrospective motion correction of accelerated MRI based on deep generative diffusion models, with potential application to other forward model corruptions. 
    more » « less
  2. Over the past decade, reversed gradient polarity (RGP) methods have become a popular approach for correcting susceptibility artifacts in echo-planar imaging (EPI). Although several post-processing tools for RGP are available, their implementations do not fully leverage recent hardware, algorithmic, and computational advances, leading to correction times of several minutes per image volume. To enable 3D RGP correction in seconds, we introduce PyTorch Hyperelastic Susceptibility Correction (PyHySCO), a user-friendly EPI distortion correction tool implemented in PyTorch that enables multi-threading and efficient use of graphics processing units (GPUs). PyHySCO uses a time-tested physical distortion model and mathematical formulation and is, therefore, reliable without training. An algorithmic improvement in PyHySCO is its use of the one-dimensional distortion correction method by Chang and Fitzpatrick to initialize the non-linear optimization. PyHySCO is published under the GNU public license and can be used from the command line or its Python interface. Our extensive numerical validation using 3T and 7T data from the Human Connectome Project suggests that PyHySCO can achieve accuracy comparable to that of leading RGP tools at a fraction of the cost. We also validate the new initialization scheme, compare different optimization algorithms, and test the algorithm on different hardware and arithmetic precisions. 
    more » « less
  3. PurposeTo develop and evaluate a simultaneous multislice (SMS) reconstruction technique that provides noise reduction and leakage blocking for highly accelerated cardiac MRI. MethodsReadOutConcatenatedk‐space SPIRiT (ROCK‐SPIRiT) uses the concept of readout concatenation in image domain to represent SMS encoding, and performs coil self‐consistency as in SPIRiT‐type reconstruction in an extended k‐space, while allowing regularization for further denoising. The proposed method is implemented with and without regularization, and validated on retrospectively SMS‐accelerated cine imaging with three‐fold SMS and two‐fold in‐plane acceleration. ROCK‐SPIRiT is compared with two leakage‐blocking SMS reconstruction methods: readout‐SENSE‐GRAPPA and split slice–GRAPPA. Further evaluation and comparisons are performed using prospectively SMS‐accelerated cine imaging. ResultsResults on retrospectively three‐fold SMS and two‐fold in‐plane accelerated cine imaging show that ROCK‐SPIRiT without regularization significantly improves on existing methods in terms of PSNR (readout‐SENSE‐GRAPPA: 33.5 ± 3.2, split slice–GRAPPA: 34.1 ± 3.8, ROCK‐SPIRiT: 35.0 ± 3.3) and SSIM (readout‐SENSE‐GRAPPA: 84.4 ± 8.9, split slice–GRAPPA: 85.0 ± 8.9, ROCK‐SPIRiT: 88.2 ± 6.6 [in percentage]). Regularized ROCK‐SPIRiT significantly outperforms all methods, as characterized by these quantitative metrics (PSNR: 37.6 ± 3.8, SSIM: 94.2 ± 4.1 [in percentage]). The prospectively five‐fold SMS and two‐fold in‐plane accelerated data show that ROCK‐SPIRiT and regularized ROCK‐SPIRiT have visually improved image quality compared with existing methods. ConclusionThe proposed ROCK‐SPIRiT technique reduces noise and interslice leakage in accelerated SMS cardiac cine MRI, improving on existing methods both quantitatively and qualitatively. 
    more » « less
  4. PurposeTo develop a physics‐guided deep learning (PG‐DL) reconstruction strategy based on a signal intensity informed multi‐coil (SIIM) encoding operator for highly‐accelerated simultaneous multislice (SMS) myocardial perfusion cardiac MRI (CMR). MethodsFirst‐pass perfusion CMR acquires highly‐accelerated images with dynamically varying signal intensity/SNR following the administration of a gadolinium‐based contrast agent. Thus, using PG‐DL reconstruction with a conventional multi‐coil encoding operator leads to analogous signal intensity variations across different time‐frames at the network output, creating difficulties in generalization for varying SNR levels. We propose to use a SIIM encoding operator to capture the signal intensity/SNR variations across time‐frames in a reformulated encoding operator. This leads to a more uniform/flat contrast at the output of the PG‐DL network, facilitating generalizability across time‐frames. PG‐DL reconstruction with the proposed SIIM encoding operator is compared to PG‐DL with conventional encoding operator, split slice‐GRAPPA, locally low‐rank (LLR) regularized reconstruction, low‐rank plus sparse (L + S) reconstruction, and regularized ROCK‐SPIRiT. ResultsResults on highly accelerated free‐breathing first pass myocardial perfusion CMR at three‐fold SMS and four‐fold in‐plane acceleration show that the proposed method improves upon the reconstruction methods use for comparison. Substantial noise reduction is achieved compared to split slice‐GRAPPA, and aliasing artifacts reduction compared to LLR regularized reconstruction, L + S reconstruction and PG‐DL with conventional encoding. Furthermore, a qualitative reader study indicated that proposed method outperformed all methods. ConclusionPG‐DL reconstruction with the proposed SIIM encoding operator improves generalization across different time‐frames /SNRs in highly accelerated perfusion CMR. 
    more » « less
  5. Abstract PurposeTo demonstrate speech‐production real‐time MRI (RT‐MRI) using a contemporary 0.55T system, and to identify opportunities for improved performance compared with conventional field strengths. MethodsExperiments were performed on healthy adult volunteers using a 0.55T MRI system with high‐performance gradients and a custom 8‐channel upper airway coil. Imaging was performed using spiral‐based balancedSSFPand gradient‐recalled echo (GRE) pulse sequences using a temporal finite‐difference constrained reconstruction. Speech‐production RT‐MRI was performed with three spiral readout durations (8.90, 5.58, and 3.48 ms) to determine trade‐offs with respect to articulator contrast, blurring, banding artifacts, and overall image quality. ResultsBoth spiral GRE and bSSFP captured tongue boundary dynamics during rapid consonant‐vowel syllables. Although bSSFP provided substantially higher SNR in all vocal tract articulators than GRE, it suffered from banding artifacts at TR > 10.9 ms. Spiral bSSFP with the shortest readout duration (3.48 ms, TR = 5.30 ms) had the best image quality, with a 1.54‐times boost in SNR compared with an equivalent GRE sequence. Longer readout durations led to increased SNR efficiency and blurring in both bSSFP and GRE. ConclusionHigh‐performance 0.55T MRI systems can be used for speech‐production RT‐MRI. Spiral bSSFP can be used without suffering from banding artifacts in vocal tract articulators, provide better SNR efficiency, and have better image quality than what is typically achieved at 1.5 T or 3 T. 
    more » « less