skip to main content


Title: Not all mosquitoes are created equal: A synthesis of vector competence experiments reinforces virus associations of Australian mosquitoes
The globalization of mosquito-borne arboviral diseases has placed more than half of the human population at risk. Understanding arbovirus ecology, including the role individual mosquito species play in virus transmission cycles, is critical for limiting disease. Canonical virus-vector groupings, such as Aedes - or Culex -associated flaviviruses, have historically been defined using virus detection in field-collected mosquitoes, mosquito feeding patterns, and vector competence, which quantifies the intrinsic ability of a mosquito to become infected with and transmit a virus during a subsequent blood feed. Herein, we quantitatively synthesize data from 68 laboratory-based vector competence studies of 111 mosquito-virus pairings of Australian mosquito species and viruses of public health concern to further substantiate existing canonical vector-virus groupings and quantify variation within these groupings. Our synthesis reinforces current canonical vector-virus groupings but reveals substantial variation within them. While Aedes species were generally the most competent vectors of canonical “ Aedes -associated flaviviruses” (such as dengue, Zika, and yellow fever viruses), there are some notable exceptions; for example, Aedes notoscriptus is an incompetent vector of dengue viruses. Culex spp. were the most competent vectors of many traditionally Culex -associated flaviviruses including West Nile, Japanese encephalitis and Murray Valley encephalitis viruses, although some Aedes spp. are also moderately competent vectors of these viruses. Conversely, many different mosquito genera were associated with the transmission of the arthritogenic alphaviruses, Ross River, Barmah Forest, and chikungunya viruses. We also confirm that vector competence is impacted by multiple barriers to infection and transmission within the mesenteron and salivary glands of the mosquito. Although these barriers represent important bottlenecks, species that were susceptible to infection with a virus were often likely to transmit it. Importantly, this synthesis provides essential information on what species need to be targeted in mosquito control programs.  more » « less
Award ID(s):
2011147
NSF-PAR ID:
10438181
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Brackney, Doug E.
Date Published:
Journal Name:
PLOS Neglected Tropical Diseases
Volume:
16
Issue:
10
ISSN:
1935-2735
Page Range / eLocation ID:
e0010768
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heise, Mark T. (Ed.)
    ABSTRACT Eilat virus (EILV) is an insect-specific alphavirus that has the potential to be developed into a tool to combat mosquito-borne pathogens. However, its mosquito host range and transmission routes are not well understood. Here, we fill this gap by investigating EILV’s host competence and tissue tropism in five mosquito species: Aedes aegypti , Culex tarsalis , Anopheles gambiae , Anopheles stephensi , and Anopheles albimanus . Of the tested species, C. tarsalis was the most competent host for EILV. The virus was found in C. tarsalis ovaries, but no vertical or venereal transmission was observed. Culex tarsalis also transmitted EILV via saliva, suggesting the potential for horizontal transmission between an unknown vertebrate or invertebrate host. We found that reptile (turtle and snake) cell lines were not competent for EILV infection. We tested a potential invertebrate host ( Manduca sexta caterpillars) but found they were not susceptible to EILV infection. Together, our results suggest that EILV could be developed as a tool to target pathogenic viruses that use Culex tarsalis as a vector. Our work sheds light on the infection and transmission dynamics of a poorly understood insect-specific virus and reveals it may infect a broader range of mosquito species than previously recognized. IMPORTANCE The recent discovery of insect-specific alphaviruses presents opportunities both to study the biology of virus host range and to develop them into tools against pathogenic arboviruses. Here, we characterize the host range and transmission of Eilat virus in five mosquito species. We find that Culex tarsalis —a vector of harmful human pathogens, including West Nile virus—is a competent host of Eilat virus. However, how this virus is transmitted between mosquitoes remains unclear. We find that Eilat virus infects the tissues necessary for both vertical and horizontal transmission—a crucial step in discerning how Eilat virus maintains itself in nature. 
    more » « less
  2. ika virus is an emerging arbovirus of humans in the western hemisphere. With its potential spread into new geographical areas, it is important to define the vector competence of native mosquito species. We tested the vector competency of Aedes vexans (Meigen) from the Lake Agassiz Plain of northwestern Minnesota and northeastern North Dakota. Aedes aegypti (L.) was used as a positive control for comparison. Mosquitoes were fed blood containing Zika virus and 2 wk later were tested for viral infection and dissemination. Aedes vexans (n = 60) were susceptible to midgut infection (28% infection rate) but displayed a fairly restrictive midgut escape barrier (3% dissemination rate). Cofed Ae. aegypti (n = 22) displayed significantly higher rates of midgut infection (61%) and dissemination (22%). To test virus transmission, mosquitoes were inoculated with virus and 16-17 d later, tested for their ability to transmit virus into fluid-filled capillary tubes. Unexpectedly, the transmission rate was significantly higher for Ae. vexans (34%, n = 47) than for Ae. aegypti (5%, n = 22). The overall transmission potential for Ae. vexans to transmit Zika virus was 1%. Because of its wide geographic distribution, often extreme abundance, and aggressive human biting activity, Ae. vexans could serve as a potential vector for Zika virus in northern latitudes where the conventional vectors, Ae. aegypti and Ae. albopictus Skuse, cannot survive. However, Zika virus is a primate virus and humans are the only amplifying host species in northern latitudes. To serve as a vector of Zika virus, Ae. vexans must feed repeatedly on humans. Defining the propensity of Ae. vexans to feed repeatedly on humans will be key to understanding its role as a potential vector of Zika virus. 
    more » « less
  3. Abstract Background

    Vector competence inAedes aegyptiis influenced by various factors. Crucial new control methods can be developed by recognizing which factors affect virus and mosquito interactions.

    Methods

    In the present study we used three geographically distinctAe. aegyptipopulations and compared their susceptibility to infection by dengue virus serotype 2 (DENV-2). To identify any differences among the three mosquito populations, we evaluated expression levels of immune-related genes and assessed the presence of microbiota that might contribute to the uniqueness in their vector competence.

    Results

    Based on the results from the DENV-2 competence study, we categorized the three geographically distinctAe. aegyptipopulations into a refractory population (Vilas do Atlântico), a susceptible population (Vero) and a susceptible but low transmission population (California). The immune-related transcripts were highly expressed in the California population but not in the refractory population. However, the Rel-1 gene was upregulated in the Vilas do Atlântico population following ingestion of a non-infectious blood meal, suggesting the gene’s involvement in non-viral responses, such as response to microbiota. Screening of the bacteria, fungi and flaviviruses revealed differences between populations, and any of these could be one of the factors that interfere with the vector competence.

    Conclusions

    The results reveal potential factors that might impact the virus and mosquito interaction, as well as influence theAe. aegyptirefractory phenotype.

    Graphical Abstract 
    more » « less
  4. Culexmosquitoes transmit several pathogens to humans and animals, including viruses that cause West Nile fever and St. Louis encephalitis and filarial nematodes that cause canine heartworm and elephantiasis. Additionally, these mosquitoes have a cosmopolitan distribution and provide interesting models for understanding population genetics, overwintering dormancy, disease transmission, and other important and ecological questions. However, unlikeAedesmosquitoes that produce eggs that can be stored for weeks at a time, no obvious “stopping” point exists in the development ofCulexmosquitoes. Therefore, these mosquitoes require nearly continuous care and attention. Here, we describe some general considerations when rearing laboratory colonies ofCulexmosquitoes. We highlight different methods so that readers may choose what works best for their experimental needs and laboratory infrastructure. We hope that this information will enable additional scientists to conduct laboratory research on these important disease vectors.

     
    more » « less
  5. Andreadis, Theodore (Ed.)
    Abstract The temperate United States has experienced increasing incidence of mosquito-borne diseases. Recent studies conducted in Baltimore, MD have demonstrated a negative relationship between abundances of Aedes albopictus (Skuse) and Culex mosquitoes and mean neighborhood income level, but have not looked at the presence of pathogens. Mosquitoes collected from five socioeconomically variable neighborhoods were tested for infection by West Nile, chikungunya, and Zika viruses in 2015 and 2016, and again from four of the neighborhoods in 2017. Minimum infection rates of pooled samples were compared among neighborhoods for each year, as well as among individual blocks in 2017. West Nile virus was detected in both Ae. albopictus and Culex pools from all neighborhoods sampled in 2015 and 2017. No infected pools were detected in any year for chikungunya or Zika viruses, and none of the target viruses were detected in 2016. Infection rates were consistently higher for Culex than for Ae. albopictus. Minimum infection rate was negatively associated with mean neighborhood income for both species in 2015. Although earlier work has shown a positive association between block-level abandonment and mosquito abundance, no association was detected in this study. Still, we demonstrate that viral infection in mosquito pools can differ substantially across adjacent urban neighborhoods that vary by income. Though trap security and accessibility often inform city sampling locations, detecting and managing arboviral risk requires surveillance across neighborhoods that vary in socioeconomics, including lower income areas that may be less accessible and secure but have higher infection rates. 
    more » « less