NiO/β-(Al x Ga 1− x ) 2 O 3 /Ga 2 O 3 heterojunction lateral geometry rectifiers with diameter 50–100 μm exhibited maximum reverse breakdown voltages >7 kV, showing the advantage of increasing the bandgap using the β-(Al x Ga 1− x ) 2 O 3 alloy. This Si-doped alloy layer was grown by metal organic chemical vapor deposition with an Al composition of ∼21%. On-state resistances were in the range of 50–2180 Ω cm 2 , leading to power figures-of-merit up to 0.72 MW cm −2 . The forward turn-on voltage was in the range of 2.3–2.5 V, with maximum on/off ratios >700 when switching from 5 V forward to reverse biases up to −100 V. Transmission line measurements showed the specific contact resistance was 0.12 Ω cm 2 . The breakdown voltage is among the highest reported for any lateral geometry Ga 2 O 3 -based rectifier.
more »
« less
Ultrawide bandgap vertical β-(Al x Ga 1−x ) 2 O 3 Schottky barrier diodes on free-standing β-Ga 2 O 3 substrates
Ultrawide bandgap β-(Al x Ga 1 −x ) 2 O 3 vertical Schottky barrier diodes on (010) β-Ga 2 O 3 substrates are demonstrated. The β-(Al x Ga 1 −x ) 2 O 3 epilayer has an Al composition of 21% and a nominal Si doping of 2 × 10 17 cm −3 grown by molecular beam epitaxy. Pt/Ti/Au has been employed as the top Schottky contact, whereas Ti/Au has been utilized as the bottom Ohmic contact. The fabricated devices show excellent rectification with a high on/off ratio of ∼10 9 , a turn-on voltage of 1.5 V, and an on-resistance of 3.4 mΩ cm 2 . Temperature-dependent forward current-voltage characteristics show effective Schottky barrier height varied from 0.91 to 1.18 eV while the ideality factor from 1.8 to 1.1 with increasing temperatures, which is ascribed to the inhomogeneity of the metal/semiconductor interface. The Schottky barrier height was considered a Gaussian distribution of potential, where the extracted mean barrier height and a standard deviation at zero bias were 1.81 and 0.18 eV, respectively. A comprehensive analysis of the device leakage was performed to identify possible leakage mechanisms by studying temperature-dependent reverse current-voltage characteristics. At reverse bias, due to the large Schottky barrier height, the contributions from thermionic emission and thermionic field emission are negligible. By fitting reverse leakage currents at different temperatures, it was identified that Poole–Frenkel emission and trap-assisted tunneling are the main leakage mechanisms at high- and low-temperature regimes, respectively. Electrons can tunnel through the Schottky barrier assisted by traps at low temperatures, while they can escape these traps at high temperatures and be transported under high electric fields. This work can serve as an important reference for the future development of ultrawide bandgap β-(Al x Ga 1 −x ) 2 O 3 power electronics, RF electronics, and ultraviolet photonics.
more »
« less
- Award ID(s):
- 2302696
- PAR ID:
- 10438184
- Date Published:
- Journal Name:
- Journal of Vacuum Science & Technology A
- Volume:
- 41
- Issue:
- 2
- ISSN:
- 0734-2101
- Page Range / eLocation ID:
- 023201
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The effects of downstream plasma exposure with O 2 , N 2 or CF 4 discharges on Si-doped Ga 2 O 3 Schottky diode forward and reverse current-voltage characteristics were investigated. The samples were exposed to discharges with rf power of 50 W plasma at a pressure of 400 mTorr and a fixed treatment time of 1 min to simulate dielectric layer removal, photoresist ashing or surface cleaning steps. Schottky contacts were deposited through a shadow mask after exposure to avoid any changes to the surface. A Schottky barrier height of 1.1 eV was obtained for the reference sample without plasma treatment, with an ideality factor of 1.0. The diodes exposed to CF 4 showed a 0.25 V shift from the I–V of the reference sample due to a Schottky barrier height lowering around 14%. The diodes showed a decrease of Schottky barrier height of 2.5 and 6.5% with O 2 or N 2 treatments, respectively. The effect of plasma exposure on the ideality factor of diodes treated with these plasmas was minimal; 0.2% for O 2 and N 2 , 0.3% for CF 4 , respectively. The reverse leakage currents were 1.2, 2.2 and 4.8 μ A cm −2 for the diodes treated with O 2 , and CF 4 , and N 2 respectively. The effect of downstream plasma treatment on diode on-resistance and on-off ratio were also minimal. The changes observed are much less than caused by exposure to hydrogen-containing plasmas and indicate that downstream plasma stripping of films from Ga 2 O 3 during device processing is a relatively benign approach.more » « less
-
This work demonstrates quasi-vertical β-Ga2O3 Schottky barrier diodes (SBDs) fabricated on c-plane sapphire substrates using an all-low-pressure chemical vapor deposition (LPCVD)-based, plasma-free process flow that integrates both epitaxial growth of a high-quality β-Ga2O3 heteroepitaxial film with in situ Ga-assisted β-Ga2O3 etching. A 6.3 μm thick (2̄01) oriented β-Ga2O3 epitaxial layer structure was grown on c-plane sapphire with 6° miscut, comprising a moderately Si-doped (2.1 × 1017 cm−3) 3.15 μm thick drift layer and a heavily doped (1 × 1019 cm−3) contact layer on an unintentionally doped buffer layer. Mesa isolation was achieved via Ga-assisted plasma-free LPCVD etching, producing ∼60° inclined mesa sidewalls with an etch depth of 3.6 μm. The fabricated SBDs exhibited excellent forward current–voltage characteristics, including a turn-on voltage of 1.22 V, an ideality factor of 1.29, and a Schottky barrier height of 0.83 eV. The minimum differential specific on-resistance was measured to be 8.6 mΩ cm2, and the devices demonstrated high current density capability (252 A/cm2 at 5 V). Capacitance–voltage analysis revealed a net carrier concentration of 2.1 × 1017 cm−3, uniformly distributed across the β-Ga2O3 drift layer. Temperature-dependent J–V–T measurements, conducted from 25 to 250 °C, revealed thermionic emission-dominated transport with strong thermal stability. The Schottky barrier height increased from 0.80 to 1.16 eV, and the ideality factor rose modestly from 1.31 to 1.42 over this temperature range. Reverse leakage current remained low, increasing from ∼5 × 10−6 A/cm2 at 25 °C to ∼1 × 10−4 A/cm2 at 250 °C, with the Ion/Ioff ratio decreasing from ∼1 × 107 to 5 × 105. The devices achieved breakdown voltages ranging from 73 to 100 V, corresponding to parallel-plate electric field strengths of 1.66–1.94 MV/cm. These results highlight the potential of LPCVD-grown and etched β-Ga2O3 devices for high-performance, thermally resilient power electronics applications.more » « less
-
High crystalline quality thick β-Ga 2 O 3 drift layers are essential for multi-kV vertical power devices. Low-pressure chemical vapor deposition (LPCVD) is suitable for achieving high growth rates. This paper presents a systematic study of the Schottky barrier diodes fabricated on four different Si-doped homoepitaxial β-Ga 2 O 3 thin films grown on Sn-doped (010) and (001) β-Ga 2 O 3 substrates by LPCVD with a fast growth rate varying from 13 to 21 μm/h. A higher temperature growth results in the highest reported growth rate to date. Room temperature current density–voltage data for different Schottky diodes are presented, and diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage are studied. Temperature dependence (25–250 °C) of the ideality factor, barrier height, and specific on-resistance is also analyzed from the J–V–T characteristics of the fabricated Schottky diodes.more » « less
-
The thermal stability of n/n + β -Ga 2 O 3 epitaxial layer/substrate structures with sputtered ITO on both sides to act as rectifying contacts on the lightly doped layer and Ohmic on the heavily doped substrate is reported. The resistivity of the ITO deposited separately on Si decreased from 1.83 × 10 −3 Ω.cm as-deposited to 3.6 × 10 −4 Ω.cm after 300 °C anneal, with only minor reductions at higher temperatures (2.8 × 10 −4 Ω.cm after 600 °C anneals). The Schottky barrier height also decreased with annealing, from 0.98 eV in the as-deposited samples to 0.85 eV after 500 °C annealing. The reverse breakdown voltage exhibited a negative temperature coefficient of −0.46 V.C −1 up to an annealing temperature of 400 °C and degraded faster at higher temperatures. Transmission Electron Microscopy showed significant reaction at the ITO and Ga 2 O 3 interface above 300 °C, with a very degraded contact stack after annealing at 500 °C.more » « less
An official website of the United States government

