skip to main content


This content will become publicly available on October 1, 2024

Title: Quantitative assessment of ligand bias from bias plots: The bias coefficient “kappa”
Award ID(s):
2106031
NSF-PAR ID:
10438194
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Biochimica et Biophysica Acta (BBA) - General Subjects
Volume:
1867
Issue:
10
ISSN:
0304-4165
Page Range / eLocation ID:
130428
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article addresses the problem of dynamic online estimation and compensation of hard-iron and soft-iron biases of three-axis magnetometers under dynamic motion in field robotics, utilizing only biased measurements from a three-axis magnetometer and a three-axis angular rate sensor. The proposed magnetometer and angular velocity bias estimator (MAVBE) utilizes a 15-state process model encoding the nonlinear process dynamics for the magnetometer signal subject to angular velocity excursions, while simultaneously estimating nine magnetometer bias parameters and three angular rate sensor bias parameters, within an extended Kalman filter framework. Bias parameter local observability is numerically evaluated. The bias-compensated signals, together with three-axis accelerometer signals, are utilized to estimate bias-compensated magnetic geodetic heading. Performance of the proposed MAVBE method is evaluated in comparison to the widely cited magnetometer-only TWOSTEP method in numerical simulations, laboratory experiments, and full-scale field trials of an instrumented autonomous underwater vehicle in the Chesapeake Bay, Maryland, USA. For the proposed MAVBE, (i) instrument attitude is not required to estimate biases, and the results show that (ii) the biases are locally observable, (iii) the bias estimates converge rapidly to true bias parameters, (iv) only modest instrument excitation is required for bias estimate convergence, and (v) compensation for magnetometer hard-iron and soft-iron biases dramatically improves dynamic heading estimation accuracy. 
    more » « less
  2. The challenges associated with efficiently and effectively linearizing a nonlinear power amplifier (PA) over wide signal bandwidths are increasingly important to the design of 5G front-ends. Conventional digital linearization techniques are limited by absolute bandwidth, while the RF-domain nonlinear PA typically exhibits consistent fractional bandwidth even as the carrier frequency is increased. Therefore, RF-domain design techniques, like those focusing on bias-line impedance selection, are critical for overall distortion reduction. To evaluate bias-line effects, a demonstrator PA is here investigated over a range of Class-AB biases and over a range of drain inductance values. The characterization under two-tone and LTE-like modulated excitations with 10-MHz and 100-MHz instantaneous bandwidth shows that the conventional linear-efficiency trade-off in bias design does not necessarily hold true for wide instantaneous bandwidths. Additionally, techniques to synthesize a negative baseband impedance using low frequency feedback are discussed. 
    more » « less